o

vrije Universiteit amsterdam

Implementing MINIX on the Single Chip
Cloud Computer

Author: First Reader:
Niek LINNENBANK Andrew S. TANENBAUM

Second Reader:
Dirk VoaGT

August 22, 2011

1843370

Abstract

In this work we implemented the MINIX operating system on the Single
Chip Cloud Computer, a research prototype manycore computer by Intel.
We redesigned MINIX such that it is able to run on the SCC with a fast
message passing IPC mechanism. Our implementation supports different
modes for message passing which we benchmarked and analyzed for per-
formance. Although future work on MINIX is still required to transform
it in a fully mature manycore operating system, we provided a solid basis
for further development and experimentation on the SCC platform.

Acknowledgements

First and foremost, I would like to thank Intel for providing us with the SCC hardware. Without
Intel’s generous donation, this work would never exist. Additionally, great many thanks go to my
supervisors: Tomas Hruby, Dirk Vogt and Andrew Tanenbaum. With the excellent guidance of
Tomas and Dirk, I was able to create solutions to the many hard challenges we faced in our work.
It has been a great pleasure for me to do this work and I am very happy to have learned so much
at the Vrije Universiteit Amsterdam.

— Niek Linnenbank, August 22, 2011

Contents

|[List of Figures|

xlossar

(1 _Introduction|

|2 Background|

2.1 __Microkernelsl
2.2 MINIXI. . . . e

2.2.1 Booting|
[2.2.2 Scheduling]
2.2.3 Synchronous IPC|.
2.2.4 Asynchronous [PC|
2.2.5 TPC Endpoints|
2.2.6 Input, Output and Interrupts|

2.3

2.3.2 Memory Architecture] Lo o
2.3.3 Management and Control PC| 00,

B

Requirements| L

8.2 Cache Incoherencel o

13.3.5 Alternative: Userspace IPC Server|

B4

Endpoint Discovery]. oo

B5

IPC Message passing| L

13.5.1 Split Shared Queue|.
8.5.2 Lock Shared Queue|.o

10

12
12
13
15
16
17
19
21
21
22
23
24
26
27
29
31

CONTENTS CONTENTS
4 Implementation| 43
BT OVEIVIEW] .« « o oo oo e e e e e e e 43
B2 Bootcodd . . . o oo 45
4.3 DOl . 47
A RKernell . . . oo 48
441 Process Structurel.o 48

442 Synchronous IPC|. oo 49

4.4.3 Asynchronous IPC|{o o000 o4

[E44 Fvent Notifications 54

445 MPB schemed 54

446 New Kernel Calls[.o o000 oo 56
6_Evaluation 57
5.1 Setup| e 57
B2 One-to-Onel e 58
b.3 One-to-Many| 60
.4 Many-to-One| e 62
6 Future Workl 65
[T_Related Workl 66
[8_Conclusion| 67
Bibliography 68
[A Default LUTSY 73
[B_Kernel Process Table Structure 75
|[C Developers Guide for MINIX on the SCC| s
[CT Building] 7
[C2 Tnffalization] . . - -« v v vt e e e 7

B Bl 82

IC.4 Configuration] e 83

List of Figures

2.1 Monolithic versus Microkernel operating system design.| 13
2.2 Overview of the MINIX 3 architecturel. 14
2.3 Booting MINIX on an standard Intel PC}. 15
2.4 Programs contained in the MINIX 3 boot image| 16
2.5 The MINIX message format| 17
2.6 Flowchart of sending a message in MINIX| 18
2.7 Flowchart of sending an asynchronous message in MINIX| 20
2.8 Handling input, output and interrupt requests in the MINIX kernel.| 22
2.9 Architecture of the Single Chip Cloud Computer.| 26
[2.10 Tile architecture design of the SCC.| 28
[2.11 SCC configuration registers description, access and offsetf. 29
[2.12 Lookup Tables map local core addresses to system memory addresses.| 30
3.1 The multikernel design principle applied to MINIX|. 35
3.2 Set a special remote flag in the kernel process table to implement global endpoints.| 35
[3.3 Encoding endpoints with the destination CPU number.| 36
B.4 Splitting the kernel process tables to distinguish local/remote processes.| 37
[3.5 Assigning a Global Process Slot to solve the global endpoints problem)] 38
3.6 Use a dedicated userspace IPC server with a known endpoint for remote IPC| . . . 39
3.7 Publishing an endpoint to the DS server for remote IPC.|. 40
3.8 Splitting the MPB 1s separate slots per source CPU to avoid locking.|. 41
3.9 Lock-sharing the MPB for sending messages between CPUs.|. 42
4.1 Contents of the MINIX OS5 image for booting on the SCCJ. 46
4.2 Publishing a global endpoint to all cores,|. 48
4.3 Message format for intercore MINIX messages on the SCC|. 49
4.4 High level overview of the SCC messaging implementation in MINIX.[. 51
:4.5 Flow of execution when invoking send() on a global endpoint.| 52
[£:6 Flow of execution when receiving from a global endpoint] 53
4.7 Flow of execution when sending asynchroneous messages to a global endpoint.|. . . 55
p.1 IPC messaging scenarios implemented in ipctest.| 58
|5.2 One-to-One send() 10000 messages on the SCCJ. oo oot 59
[5.3 One-to-One send() 10 million messages on the Intel Xeon] 59
[.4 One-to-One senda() 10000 messages on the SCC] 60
[.5 One-to-Many send() with 1000 messages on the SCC] 61
[.6 One-to-Many send() with 1 million messages on the Intel Xeon] 61
[5.7 One-to-Many senda() with 1000 messages on the SCCJ 62
5.8 Many-to-One send() with 1000 messages on the SCC| 63

LIST OF FIGURES LIST OF FIGURES

5.9 Many-to-One senda() with 1000 messages on the SCC.| 63
5.10 Many-to-One send() with 1 million messages on the Intel Xeon.|. 64

2D

A.OUT
ACPI

AHCI
APIC

ATA

BIOS
BMC
bug

CD-ROM
CL1INVMB

CMOS
CMP
CPU

DDR3
die
DS

EXT2FS
FPGA

GB
GUI

I/O

ID
INET
IOAPIC

Glossary

Two Dimensional,

Executable file format for UNIX systems,
Advanced Configuration and Power Interface,

Advanced Host Controller Interface,
Advanced Programmable Interrupt Controller,

Advanced Technology Attachment,

Basic Input and Output System, [15]
Board Management Controller,

Programming error in a computer program,

13
Compact Disc Read Only Memory,

Clear Level 1 Cache with Message Passing
Buffer Type bit instruction,
Complementary Metal Oxide Semiconductor,
Chip Level Multiprocessing,

Central Processing Unit,
B3 BT B3 B3 2 24 £ [B3 b7} 69

Double Data Rate type three,

Silicon computer chip, [2

Datastore Server, ,

Extended 2 File System,
Field Programmable Gate Array,

Gigabyte,
Graphical User Interface,

.7 B 5 B

Input and Output,

Identity, ,
A5

Internet Network Server, ,
Input and Output Advanced Programmable In-

terrupt Controller,

Glossary

Glossary

IP
IPC

IPI

JMFS
KB
LUT

MB
MBR
MCPC

MFS
MHz
MIU
MMU
MPB

OS

P54C
PC
PCI
PCI/e

PFS
PIC
PID
PIT
PM
POSIX
PS2

RAM
RS

SCC

SMP

source code

TCP
Tera

Internet Protocol, [23]
Inter Process ComEun!caEion,

4], [49] (0L B8
s botah Toerti, 25 08 3 5 0 63
b7 B3 5% F1]

Journaled MINIX File System,

Kilobyte,
Lookup Table,
Megabyte,

Master Boot Record,
Management Control Personal Computer,
MINIX File System,

Megahertz,

Mesh Interface Unit, ,
Memory Management Unit,

Message Passing Buffer, 29|
B39 B4 b7 B3 % B

Operating System,

Intel Pentium Processor, , , @

Personal Computer, 16]

Peripheral Component Interconnect,
Peripheral Component Interconnect Express,

B
Pipe File System,
Programmable Interrupt Controller,

Process Identity, 44

Programmable Interval Timer,

Process Manager, . m

Portable Operating System Interface for UniX,

[3
Personal System/2,

Random Access Memory, [15]

Reincarnation Server, 22}

Single Chip Cloud Computer,
29 B11 B3} B4 [36} [0} (A3} {15} {7} {50} (561 58}

Symmetric Multi Processing,

Human readable program text, which may be
interpreted or compiled into machine language
for execution by the computer,

Transmission Control Protocol,
1 trillion or 1,000,000,000,000,

Glossary

Glossary

TLB
TTY

UART
UDP
VES

VGA
VM

Translation Lookaside Buffers,

Teletype Writer,

Universal Asynchronous Receiver Transmitter,

(3} B
User Datagram Protocol,

Virtual File System, |1_5 23

Video Graphics Array, 4Z|_
Virtual Memory, {34 44

—

Chapter

Introduction

Since the introduction of microprocessor based computers several decades ago, manufacturers have
repeatedly found clever ways to increase the speed of a single CPU. The methods engineers used
to speedup a CPU are increasing clock frequencies, cache sizes and instruction level parallelism [I].
For a long time these techniques helped to make computers increasingly faster. However, at the
same time it became increasingly harder to continue this trend [2,[3]. First, due to the progressivly
smaller chip geometries and higher clock frequencies the transistor leakage current increases, lead-
ing to excessive power consumption and heat. Second, over time processor speed grew relatively
faster than memory speed [4] [5]. This high memory access latency prevents further performance
gains. In an attempt to further increase computing power, hardware designers decided to increase
the number of CPUs instead [6]. This led to the Symmetric Multi Processing (SMP) computer
systems widely available today. Recent processors from Intel take the level of parallelism even
further with Chip Level Multiprocessing (CMP), adding multiple execution cores per CPU. Al-
though current hardware now provides more performance potential due to more parallelism, the
operating system software must also change to actually gain higher performance.

Most modern operating systems for SMP architectures assume a consistent view of shared memory.
Typically all bookkeeping information is in shared memory and locking is used to avoid concurrent
updates to the same information. In SMP architectures each CPU has their own private memory
cache. The hardware guarantees to the software that these memory caches are kept synchronized
when CPUs write to memory. Effectively this gives software developers always a consistent view
of memory which makes the software more simple. However, when adding more CPUs to an SMP
system, under the hood more synchronization traffic is needed to keep all private memory caches
coherent. Although current operating systems attempt to temporarily deal with this limitation
by avoiding sharing, it makes further scaling of SMP computer systems difficult.

Intel introduced a new computer system called the Single Chip Cloud Computer (SCC) [7] which
removes cache coherence. The SCC is an experimental 48-core computer system for exploring the
possibilities of cache incoherent hardware.All cores in the SCC are on a single die, interconnected
by a novel mesh network. In addition, the SCC has hardware support for message passing and
allows software developers to scale frequencies and voltages on much finer granularity. The in-
ternal architecture of the SCC allows hundreds to thousands of cores in future versions, which
challenges operating system designers to scale the software accordingly. Although current operat-
ing systems can scale up to a few dozen cores [§], scaling to hundreds or thousands of cores with
many concurrent applications and I/O requests is still an unresolved issue.

10

CHAPTER 1. INTRODUCTION

MINIX 3 [9] is an operating system which can potentially be the answer. In contrast to traditional
monolithic operating system kernels, MINIX is a microkernel based OS. All well known operating
system functionality like device drivers, file systems and memory management are implemented
as unprivileged processes in MINIX. The processes communicate by sending small messages to
each other using IPC primitives offered by the kernel. On a multicore system these processes can
run concurrently on different CPUs. Additionally, since the server processes in MINIX share little
memory (if at all), overhead due to locking is minimal. Moreover if the number of CPUs is greater
than the number of processes, context switching may not be needed. Therefore MINIX potentially
achieves high scalability on multicore.

In this work we modified MINIX to run on the SCC. Since MINIX was originally designed for
uniprocessor and SMP computer systems, we introduced design changes which allow MINIX to
function in a cache incoherent environment. Additionally, we changed several core components
in MINIX which depend on hardware devices unavailable on the SCC. Especially the startup
procedure of MINIX required a complete rewrite for the SCC. Finally, we extended the message
passing code in MINIX to support the SCC hardware based messaging and evaluated different
implementations for message passing.

The rest of this thesis is structured as follows. Chapter [2] describes the MINIX operating system
and the SCC in detail. In Chapter [3| we discuss the design choices we made and what alternative
designs we considered. Chapter [dis a detailed description of the implementation of MINIX on the
SCC. Chapter [5] evaluates the the MINIX SCC implementation including performance results. In
Chapters [f] and [7] we discuss future and related work, respectively. We conclude in Chapter [§]

11

—

Chapter

Background

In this Chapter we describe relevant background information which is needed to understand the
design and implementation of our work. First, we introduce the microkernel operating system
architecture in Section 2.1} which is relevant for understanding MINIX in Section 2.2} Second, we
give a technical overview and details of the SCC in Section [2.3

2.1 Microkernels

When creating an operating system, software developers must choose a kernel design. The kernel
is a software component which runs in priviledged mode. When user applications need to access
hardware, they must invoke the kernel to perform the required action on their behalf. A funde-
mental design choice of a kernel is to determine what functionality it should have.

Figure -] illustrates two different ways to design the kernel. As shown in Figure the mono-
lithic kernel implements most of the operating system functionality, such as file systems, device
drivers and memory management, inside the kernel. For example, if a user application needs to
read a file, it asks the kernel to retrieve the corresponding data blocks from disk by doing a kernel
trap. A kernel trap switches the CPU mode from unprivileged to privileged and begins executing
kernel code. Inside the kernel, the file system module calls the disk module to read the data blocks
from disk. Finally, the kernel switches back to the user application code.

The microkernel design in Figure [2.1b| implements the majority of OS functionality in server
processes, which are scheduled by the microkernel. The server processes communicate by message
passing, with help from the kernel. For example, whenever a user application needs to read a file,
it asks the kernel to deliver a message to the corresponding file server process using a kernel trap.
On receipt, the file server process in turn sends a message to the disk driver server to read the
data blocks. Finally, the file server replies back to the user application.

One of the advantages of the microkernel design is that the kernel itself contains minimum func-
tionality. Microkernels only offer three major functions: scheduling processes, Inter Process Com-
munication (IPC) and I/O handling. In contrast to monolithic kernels, the small amount of code
in microkernels reduces the risk of kernel bugs which are often fatal [10]. Additionally, bugs in
server processes not neccessarily affect other running processes. Since each server in the micro-
kernel design runs in a separate address space, it cannot overwrite memory belonging to other
processes. Even after a server process crashes, it can be restarted. Of course, care must be taken
to avoid loss of state if a server process crashes.

12

CHAPTER 2. BACKGROUND 2.2. MINIX

‘ User ‘ ‘ User S User ‘ LAZT; ‘ ‘ L'Iisp%r Hl-
App App App

W
A J

EEnm ‘ Server ‘ ‘ Server ‘
Module ‘ Module # mmm Module \ 4
‘ v

“ Ve Kernel

(a) Monolithic Kernel (b) Microkernel

Figure 2.1: Monolithic versus Microkernel operating system design.

Due to the componentized design of a multiserver operating system, it is easier to update compo-
nents [11] while the system is running. For example, if a software developer creates a new version
of a network driver to correct a bug, he can replace the currently running network driver without
disrupting other servers, drivers or active network connections. Although it is also possible to live
update monolithic kernels [12], it is easier to update server processes in a microkernel as they are
well isolated. Moreover, in contrast to monolithic kernels, if newly updated components crash it
does not bring down the entire system, which makes updates less risky. Additionally, an older
version can be restored.

Although microkernels are more reliable than monolithic kernels, the design does not come for
free. Scheduling server processes requires context switches. A context switch means changing cur-
rently active memory mappings and CPU registers to the last saved state of a process. Monolithic
kernels do not need context switches when a user application performs a kernel trap. Therefore,
microkernels are conceptually slower than monolithic kernels. However, the L4 microkernel [I3]
proved that microkernels can implement fast IPC mechanisms and that context switching over-
head may not be significant. Additionally, some hardware architectures such as MIPS [14] offer
better support for fast context switching using software managed Translation Lookaside Buffers
(TLB). Moreover, with the uprise of multicore systems the context switching overhead can be
spread among the cores. If the number of cores is higher than the number of processes, context
switching can be completely avoided.

2.2 MINIX

MINIX 3 is a reliabable secure operating system created at the Vrije Universiteit Amsterdam for
research, education and small embedded devices. From the start MINIX 3 is designed with a
number of core principles in mind [I5]. First, the MINIX operating system incorporates isolation
of components. This means MINIX is split up in separate components which cannot influence
each other in case of malfunction. Second, components in MINIX receive only the least privilege
required to do their job, reducing damage when they behave inappropriately. Third, MINIX is
a fault tolerant [16] operating system which can recover from crashing components. In MINIX a
software bug in operating system components is not necessarily fatal nor can it bring down the
entire system. Moreover components in MINIX can be selected for dynamic update, which allows
performing updates to components without system downtime. Finally, MINIX aims to provide
standard compliance to users, including the well known POSIX [I7] software interface.

MINIX 3 is designed as a microkernel based operating system. The majority of operating system

functionality such as device drivers, file systems and memory management are implemented in
server processes. Servers are isolated, unprivileged processes with their own private memory and

13

2.2. MINIX CHAPTER 2. BACKGROUND

minimal (hardware) resources, which means they cannot in any way get access to resources which
they do not own. In order to implement a fully working operating system, server processes can
send messages to each other to request a particular service.

As shown in Figure MINIX is structured in four different layers. The first layer is for regu-
lar processes created for programs ran by the user. These user processes may send messages to
the server processes in the second layer below it for invoking operating system services, such as
reading or writing files, opening network connections or submitting content to the printer. Under
the server processes in the third layer are device drivers, which are responsible for interfacing
with hardware devices. The lowest software layer in MINIX is the kernel. The kernel is the only
privileged component in MINIX with unprotected access to all resources in the system including
memory, and offers three major functions. First, the kernel is responsible for scheduling processes
for execution on the CPU. This involves keeping track of all (in)active processes in the system and
periodically switching processes to let each run a fair amount of time. Second, the kernel deals
with direct input, output and interrupt handling of hardware devices. Since the driver processes
in MINIX are unprivileged they cannot directly read and write data from devices. Therefore the
kernel performs the I/O on their behalf if they have permission to do so. Finally, the kernel offers
inter process communication primitives by exporting an interface which allows processes to send
and receive messages.

Processes in a layer in MINIX can only send messages to processes directly in the layer below
it. For example, user applications can send messages to all server processes, but never to de-
vice drivers. This restriction ensures that user applications cannot bypass security checks in the
servers, such as file permissions, by directly sending messages to the drivers. Additionally, user
applications and drivers are untrusted in MINIX. They may malfunction at any time, such as
crashing, deadlocking, returning bad messages and more. The other trusted layers, servers and
the kernel, do not suffer from failing applications and drivers in MINIX.

User User S User Applications
App App App (untrusted)

Process mn VFS Data Driver Servers
Manager Server || Store | Manager (trusted)

J

Network| | File 4/_ Device || Device Drivers

Server | | Server /‘ Driver || Driver (untrusted)
—]
Kernel
K I
W } (trusted)

Figure 2.2: Overview of the MINIX 3 architecture.

CHAPTER 2. BACKGROUND 2.2. MINIX

2.2.1 Booting

In our work we needed to completely rewrite the MINIX startup procedure for running on the
SCC. In this Section we briefly discuss how MINIX boots on a standard PC. Booting an operating
system on a PC begins as soon as the PC is turned on. Special software called a bootloader is
responsible for loading the operating system kernel from selected storage device, typically a local
disk, CD-ROM or floppy, into memory. Once execution of a monolithic kernel begins, additional
(user) programs can be loaded from disk using the internal disk driver inside the kernel.

Memory
1
BIOS -+ CMOS Floppy
3
. 2 .
Boot Monitor -+ Disk CD-ROM
— 4
5 -~
Boot Image
Kernel

Device Drivers & | 4
System Servers

Figure 2.3: Booting MINIX on an standard Intel PC

Figure illustrates the the steps needed to fully start MINIX. The first steps begins as soon
as power is turned on. A special program called the Basic Input and Output System (BIOS)
is the first code executed by the CPU. The BIOS is normally stored on the CMOS, a very low
power static memory component. From the BIOS the user can choose which storage device to
boot from. In the regular case this is a local disk, but CD-ROM, floppy or even network boot are
often supported by the BIOS. Once the BIOS has chosen a storage device, either by default or by
manual user override, it loads the first 512 bytes (the Master Boot Record) from the device into
memory and continues execution there.

In the case of MINIX, the MBR contains a small program which in turn loads another bigger
program called the boot monitor from disk into memory. The boot monitor is responsible for
presenting the user with an environment for loading MINIX kernels. It currently gives the user a
text console prompt in which the user can manually enter commands. For example, the user can
select a specific MINIX image to be loaded and pass parameters for the boot sequence.

Since device drivers and file systems are separate programs in MINIX, loading only the kernel
into memory is not enough to start the system. The MINIX kernel does not know anything about
any devices including disks. Therefore the kernel alone cannot load more servers and drivers. To
solve this problem, the boot monitor additionally needs to load a boot image from disk in memory,
and pass its address to the kernel. As shown in Figure the boot image contains all the required
device drivers and servers to bring the operating system fully online. On startup, the kernel locates
the boot image in memory and creates process entries for each of them in its internal process table

15

2.2. MINIX CHAPTER 2. BACKGROUND

Component | Description
kernel Kernel Code and Data
pm Process Manager
vis Virtual File System
s Reincarnation Server
memory Memory Driver (RAM disk)
atwini ATA Disk/CD-ROM Driver
floppy Floppy Driver
log Log Device Driver
tty Terminal Device Driver
ds Data Store Server
mfs MINIX File System Server
v Virtual Memory Server
pfs Pipe File System Server
sched Userspace Scheduling Server
init Init Process

Figure 2.4: Programs contained in the MINIX 3 boot image

so they can be scheduled. Once the basic system is running, additional device drivers and servers
can be loaded from the local disk, such as the network and audio drivers.

The MINIX kernel expects to be loaded in a specific state by the boot monitor, before it can
be executed. First, it is assumed that the boot monitor loads the components from the boot
image into memory such that they do not overlap. Second, the components must be loaded page
aligned, which is 4K on Intel machines. This is important when later on the Virtual Memory server
wants to turn on virtual memory [18]. Loading the components at page aligned addresses ensures
that when paging is turned on, the virtual memory pages point to the correct memory sections and
not partly overlap with others. Third, the boot monitor must initialize the component’s memory.
Every process in MINIX has three different types of memory associated with it: code, data and
heap. The code section contains the program’s machine instructions for execution by the CPU.
The data section has static data, such as integer constants and character strings. Finally, the
heap section is used by the program for storing the values of dynamic variables, such as counters
or other internal state variables. It is assumed that the heap section initially contains only zero
bytes. Therefore the boot monitor must allocate enough space for the heap section when loading
the component into memory and make sure to zero all bytes in the heap. Last but not least the
boot monitor must pass all relevant information needed to the kernel, including the addresses of
the boot image components in memory and any configured boot monitor parameters.

2.2.2 Scheduling

The kernel is the lowest level software in the MINIX operating system and runs with all privileges
enabled. One of the core tasks of the kernel is to schedule processes. On a basic PC there are
only one or two CPUs in the system. This means that only one process can run at a time on a
CPU. Since sometimes user programs can take quite long to finish, it is often desired to pre-empt
a running process such that other processes can get a chance to run on the CPU as well. This
principle is called multitasking or multiprogramming. Therefore the kernel uses clock hardware
to context switch between processes whenever it receives an interrupt from the clock. In most
Intel systems there is a clock device called the Programmable Interval Timer (PIT) [19] which can
generate a hardware interrupt at regular intervals. The MINIX kernel uses the PIT for scheduling
processes on Intel systems. By default the PIT is configured to generate an interrupt 60 times a
second in MINIX.

16

0~ Utk WN -

CHAPTER 2. BACKGROUND 2.2. MINIX

Since version 3.1.8, MINIX supports userspace scheduling [20]. This means that it is possible
for a special userspace scheduling server to make the scheduling decisions on behalf of the ker-
nel. This reduces the functionality needed in the kernel itself even further and allows changing
scheduling policies dynamically by sending a message to the scheduling server. On the other hand
a constant overhead will be added since the scheduling server needs to run to be able to make the
scheduling decisions.

2.2.3 Synchronous IPC

The majority of functionality in the MINIX operating system is implemented in user space pro-
cesses which communicate by message passing. Figure shows the structure of messages in
MINIX. First, messages contain a source field indicating from which process the message came.
Second, every message has a type field. The type field distinguishes different types of messages
and can be filled arbitrarily by processes. Finally, every message has a payload with a maximum
of 28 bytes. In total a MINIX message is 36 bytes.

typedef struct {

endpoint_t m_source; /x who sent the message x/

int m_type; /* what kind of message is it *x/

union {
mess_-1 m.ml; /* message payload types are a set of integers and */
mess_2 m_m2; /* character (pointers) with a mazimum of 28 bytes. x/

mess-3 m-m3;
mess_-4 m-m4;
mess_-5 m-mb;
mess_7 m._m7;
mess-8 m-m8§;
mess_-6 m-m6;
mess_9 m.m9;
} moug
} message;

Figure 2.5: The MINIX message format

MINIX offers several synchronous message passing primitives to deliver messages. After calling
any of the synchronous primitives, the message has either been successfully delivered or an er-
ror occured. MINIX supports the following synchronous message passing primitives, which are
implemented as kernel calls:

e int send(endpoint_t dest, message *m _ptr)
Sends the message at m_ptr to the destination process dest. This function will block until
either the message is delivered to the destination process or an error has occurred.

e int receive(endpoint_t src, message *m_ptr, int *status_ptr)
Receive a message in m_ptr from source process src. The source might be a specific process
or the special ANY keyword to indicate any source. Additionally, the status_ptr variable
may contain optional status flags about the message. This function blocks until either a
message has arrived or an error has occurred.

e int sendrec(endpoint_t src_dest, message *m_ptr) Sends the message at m_ptr to the
destination process src_dest and in the same call receives a message from the destination
in the m_ptr variable. This function is both a send and receive in the same call and will
block until it has both send and received a message from the destination or until an error
has occurred.

17

2.2. MINIX CHAPTER 2. BACKGROUND

memory
failure

success

Figure 2.6: Flowchart of sending a message in MINIX

18

CHAPTER 2. BACKGROUND 2.2. MINIX

All of the message passing primitives in MINIX invoke the kernel, which is responsible for deliv-
ering messages at the correct destination. Calling synchronous message passing primitives may
change the scheduling flags of a process. For example, when a process invokes send() but the
destination process receives() only from another specific process, the sending process will not be
scheduled until the message is delivered. User applications in MINIX can only invoke sendrec().
This ensures that user applications cannot create IPC deadlocks. If a user application would in-
voke send() but never receive(), the server process cannot deliver a reply message to the application.

Figure [2.6] illustrates the basic flow of execution when sending a message in MINIX. The pro-
cess first invokes the send() function with the destination and message as arguments. Then the
send() function will perform a kernel trap operation, which changes the execution context to the
kernel. The kernel has a handler function mini_send() which is called when a process wishes to
send a message to another process. The kernel is responsible for doing sanity checks on the re-
quested destination process, such as whether it actually exists and if the calling process is allowed
to send a message to it. For example, in MINIX there are various device drivers which take care
of interaction with hardware devices, such as the disk driver. A regular user process should not
be able to send messages to the disk driver as otherwise it could directly read data from the disk
and avoid security checks in the file system server. Therefore, each process in MINIX has subset
of allowed IPC destinations to which it is allowed to send messages to. Next, the mini_send()
function can only deliver a message to the destination if it is actually waiting for a new message.
If the destination did not call receive(), the calling process is flagged unschedulable to block it
from executing. Later on when the destination process calls receive() the kernel can continue with
delivering the message. At that point the last step is to copy the message from the calling pro-
cess’s memory to the destination process’s memory. Additionally, the kernel overwrites the source
field of the message, to prevent forgery. If no memory errors occur, the message is considered
successfully delivered.

2.2.4 Asynchronous IPC

In addition to the synchronous message passing primitives, MINIX also offers asynchronous mes-
sage passing functionality to processes. The asynchronous primitives are neccessary in some cases
to avoid deadlock scenarios. For example, when two processes occasionally need to send a message
to each other they would deadlock if both processes try to send a message at the same time. By
using asynchronous message passing the sending call does not block and thus the deadlock can
be avoided. The MINIX kernel offers the following asynchronous, non blocking message passing
primitives to processes:

e int sendnb(endpoint_t dest, message *m_ptr)
Attempt to send the message m_ptr to destination process endpoint_t. In contrast to send(),
this function always returns immediately. If the destination process is unable to receive the
message the function returns with an error.

e int senda(asynmsg_t *table, size_t count)
Attempt to send one or more asynchronous messages in table with at least count entries.
The kernel attempts to deliver these messages while the application can keep running.

e int notify(endpoint_t dest) Notifies the destination process dest. The destination process
will receive an empty message indicating it has been notified.

The sendnb() function is useful in cases where the destination process is untrusted and may not
have called receive() yet due to a crash or deadlock. Sendnb() only delivers the message if the
other process is receiving and never blocks. In case the message cannot be delivered the caller
must either temporarily store the message and try again later or discart it.

19

2.2. MINIX CHAPTER 2. BACKGROUND

In some cases messages temporarily storing messages makes the software too complex and dis-
carting messages is not an option. The senda() primitive is an alternative to sendnb() which
solves these issues. It allows programs to submit a message table to the kernel containing mes-
sages for transit. As shown in Figure while MINIX is running the kernel will occasionally
peek in the asynchronous messaging tables during execution and attempt to deliver.

receive(src, m_ptr,
status_ptr)

v v

mini_senda() mini_receive()

! v

Attempt to receive
message (if any)

senda(table, count)

Store table+count
In Process table

/7

New message?

Try to deliver
asynchroneous
message(s)

Return OK \ Block until

Message arrives

Figure 2.7: Flowchart of sending an asynchronous message in MINIX

One disadvantage of senda() is that the messages table may become full. Fortunately user ap-
plications do not have to manage the asynchronous messages table themselves. Instead a library
function called asynsend() takes care of managing the slots in the asynchronous messaging table
and calling the senda() function appropriately:

e int asynsend(endpoint_t dst, message *msg)
Sends the message msg to destination process dst without blocking. Internally this function
calls senda(). This function returns OK if the message is being delivered or an error code
otherwise.

MINIX provides yet another asynchronous messaging primitive which is notify(). This function
serves as a way for processes to send interrupt signals to each other. For example, when one
or more special events occur in a driver process and it wishes to inform a server process, it can
use notify(). In contrast to the other primitives, notify() has the same semantics as hardware
interrupts. This means that whenever a driver process calls notify() multiple times on the same
destination process, but it has not yet processed any of them yet, only one notify message will
eventually arrive at the destination.

20

CHAPTER 2. BACKGROUND 2.2. MINIX

2.2.5 TIPC Endpoints

Processes in MINIX are able to communicate by sending and receiving messages to and from end-
points. An endpoint is a 32-bit unique number selected by the kernel. Every process in MINIX has
a single endpoint number, which never changes. The MINIX kernel chooses a new endpoint num-
ber when creating a new process. This ensures that whenever a process crashes and is restarted,
it receives a different endpoint number. That way other processes which communicate with the
recently crashed process are aware of the crash since the old endpoint no longer works.

Endpoints in MINIX contain two types of information. First, endpoints store the Process Slot. The
MINIX kernel keeps track of processes using its process table and the slot of a process describes
the index of the corresponding entry in the process table. Second, an endpoint has a generation
number. The generation number of a process begins with zero and is incremented by one every
time it forks. Therefore, when a process is recreated with fork() after a crash, it receives a different
endpoint from the kernel. Generation numbers also makes sure that when a process forks multiple
times, each child will receive a different endpoint every time, even if the previous child has died
already. The following formula calculates an endpoint number:

Endpoint = (Generation * Max Generation) + Slot

The generation size is the maximum number a generation can be and is higher than the max-
imum number of processes. With an endpoint number it is easy to calculate the corresponding
process slot by dividing it modulus the generation size:

Slot = ((Endpoint + Max Processes) % Max Generation) - Max Processes

As discussed in Section MINIX is started using a boot image. Every process in the boot
image has a static endpoint number. Having a well known endpoint number for components in
the boot image makes bootstrapping MINIX easier. There are also a few other special endpoint
numbers in MINIX. First, there is the ANY endpoint which indicates ’any process’ for use in the
receive() IPC primitive. Second, the special endpoint NONE indicates 'no process at all’. This
special endpoint can be used to initialize internal structures containing endpoint number(s) with
a default value. Finally, a process can use the special endpoint SELF to indicate itself.

2.2.6 Input, Output and Interrupts

Since the kernel is the only component in MINIX which runs with all privileges enabled, it is also
the only component which can interact directly with hardware devices. In Intel based systems,
hardware devices can present operating system programmers with two ways for input and output:
I/O ports and memory mapped I/O. An I/O port is a 16-bit number and can be assigned to
only one hardware device. Programmers can read and write from I/O ports using special CPU
instructions. For example, INB and OUTB are instructions for reading and writing a single byte
from and to an I/O port, respectively. These instructions can only be executed in privileged kernel
mode in Intel based systems.

As shown in Figure MINIX device drivers need to ask the kernel to do any I/O port op-
eration on their behalf. The kernel will verify any attempt to do I/O port operations such that
unauthorized user processes cannot interact with the hardware this way. In Intel based systems,
hardware devices can also present programmers with a special memory area for doing I/O oper-
ations. If a device driver in MINIX needs to access such memory mapped I/0 region, it can ask
the PCI server for permission to map the I/O region in its process address space. Occasionally
some hardware devices need to interrupt the CPU when a special event occurs. For example,
the PS2 controller on the keyboard needs to interrupt the CPU when a key is pressed so it can
be captured and processed by the terminal driver. On most architectures including Intel PCs,

21

2.2. MINIX CHAPTER 2. BACKGROUND

if an interrupt is triggered the CPU will enter a special code section in kernel mode called the
interrupt handler. As illustrated by Figure [2.8] the MINIX kernel constructs a new message and
delivers it to the corresponding driver process when it receives a notify from a hardware device.
Once the driver process receives the message generated by the interrupt, it can use I/O ports
or memory mapped I/O to see what has changed for the hardware device. Intel based systems
have a special Programmable Interrupt Controller (PIC) [2I] hardware component which regulates
delivering interrupts to the CPU. The PIC configures from which hardware devices the operating
system wants to receive interrupts. When a driver is started in MINIX, it may need to enable
receiving interrupts and the kernel configures the PIC on its behalf.

Driver

/ Device

J
Kernel /

I/O IRQ

|
module handler Interrupt!

~

Input/Output

Figure 2.8: Handling input, output and interrupt requests in the MINIX kernel.

2.2.7 Servers

Servers are the basic building block of the MINIX operating system. All servers have a clear
purpose. Servers are trusted system components which means it is assumed they do not show any
malicious behaviour. Additionally, servers are the only type of processes which can send messages
to device drivers. Together, these servers form the core of the MINIX operating system:

Reincarnation Server (RS) RS is a special component in MINIX. RS the root process and is
responsible for the reliability of the entire operating system. If a driver crashes, for example
because of memory corruption errors, RS receives a signal message from the kernel. Then RS
typically attempts to restart the driver in the hope it can recover from the error. Additionally,
the RS server sends a keep alive message to every component at regular time intervals. RS
expects processes to always send a reply back, indicating it is still functioning correctly. If
RS does not receive a reply back, the component likely is in a deadlock, infinite loop or other
errorneous state. In that case RS also restarts the faulty component. Of course, if RS itself
crashes or there is a fatal hardware failure such as power loss, MINIX cannot recover from
the error. Finally, since RS is the root process, it is also responsible for starting all other
servers.

Datastore Server (DS) There is another system server process which is involved in the relia-
bility of the MINIX operating system. DS provides a persistent storage of server state in
memory. When a component is running it can, from time to time, save the values of impor-
tant variables in the DS server’s memory. Should the component crash and be restarted by
RS, it can retrieve the previous values of the stored variable at the DS server. The DS server
supports saving several types of data using a unique key, including integers, character strings
and binary data and allows lookup of variables using the key. Additionally, the DS server

22

CHAPTER 2. BACKGROUND 2.2. MINIX

also functions as a naming server in MINIX. When RS creates a new server, it publishes the
endpoint number of the new server to DS using the server name as the key. When another
process needs to send a message to the new server, it can ask DS for the endpoint using the
name of the server.

Virtual Memory server (VM) VM is responsible for managing both virtual and physical mem-
ory mappings. It keeps a list of available and allocated memory pages and is the only process
in MINIX which has access to all system memory. Whenever another component in MINIX
needs more memory or access to memory mapped I/0, it must send a message to VM.

Process Management server (PM) PM is responsible for creating, destroying and managing
processes in MINIX. Just like the kernel, PM has an internal process table. PM implements
functionality for POSIX [I7] compliance in MINIX. PM works closely together with the
VFS system server, especially when creating a new process. When creating processes the
PM server needs the help of VFS to obtain the program executable code.

Virtual Filesystem Server (VFS) Another core function of an operating system is to provide
an abstraction for managing data storage. This is usually done by file systems. In MINIX,
VF'S is responsible for providing a unified interface to all mounted file systems in the system.
It acts as a man in the middle between user processes and file system server implementations,
such as the Journaled MINIX File System (JMFS) [22] and the Extended 2 file system
(EXT2FS). User processes can only send IPC messages to VFS and never directly interact
with file system servers nor (storage) device drivers.

Peripheral Component Interconnect Server (PCI) The PCI server allows device drivers to
access devices on the PCI bus [23]. Device drivers can send a message to the PCI server to
claim device resources, such that it receives permission for I/0.

Internet Network Server (INET) MINIX supports a wide range of standard networking pro-
tocols, including TCP/IP [24] and Ethernet [25]. The component in MINIX responsible
for the implementation of such network protocols is INET. It keeps track of all established
TCP/IP connections, open TCP and UDP ports and knows about all network device drivers
in the system. Whenever a regular user process needs to send data over a network connec-
tion, the INET server will generate the correct network packets and sends IPC messages to
the network device drivers to transmit and receive the appropriate packets.

2.2.8 Drivers

Another type of processes in MINIX are device drivers. Unlike servers, device drivers are un-
trusted. In MINIX there are no assumptions about the current state or implementation quality of
device drivers. If a driver crashes, becomes unresponsive or returns incorrect messages, it never
significantly harms the rest of the system. Drivers in MINIX are also stateless. This means all
important state information, such as opened files and network connections, are kept at the servers.
For example, the disk driver provides functions for reading and writing disk blocks only. It does
not know anything about files. In this case, VFS is the only process which carries state infor-
mation about files. Some important device drivers, which were also needed or modified in the
implementation of MINIX on the SCC, include:

Terminal Driver (TTY) TTY is responsible for the operation of the system console. It has
support for three different types of system consoles:

Keyboard/Screen The most standard system console is a keyboard and screen display.
The user types commands on the keyboard and result output is displayed on the screen.
Currently the TTY driver supports AT /PS2 keyboards, dozens of different keymappings
and standard VGA display screens.

23

2.2. MINIX CHAPTER 2. BACKGROUND

Serial The TTY driver supports a serial port as the system console for debugging pur-
poses. In such scenario users typically have two systems connected by a serial cable.
One system runs MINIX and the other system has another operating system with an
application running to read data from the serial port.

Pseudo When connecting to the OpenSSH [26] server on MINIX, each connection receives a
special pseudo terminal. Pseudo terminals are not directly attached to a real hardware
device, but in the case of the OpenSSH server to a TCP/IP connection managed by
INET.

Disk Driver The disk driver reads and writes disk blocks from and to the local disk(s). The
disk driver contains no state information which makes recovering from a crash easier. The
Virtual File System Server (VFS) and the MINIX File System Server (MFS) carry all the
state information neccessary for handling concurrent requests from user processes. MINIX
currently supports ATA and AHCI disks.

Memory Driver The memory device driver is used during the bootstrapping of MINIX to serve
as an initial file system. It contains configuration files and programs needed to startup
MINIX. Additionally, the memory device driver serves various special files in the /dev di-
rectory, including:

/dev/ram In-memory file system, for temporary files.
/dev/mem Access to absolute memory addresses.
/dev/kmem Access to kernel virtual memory.
/dev/null Null device (data sink).

/dev/boot Boot device loaded from boot image.
/dev/zero Zero byte stream generator.

/dev/imgrd Boot image RAM disk.

Network Driver MINIX supports various types of network cards. Each type of network card is
implemented in a network device driver. Like the disk driver it does not contain any state
information, except for the status of the network hardware itself. It is the responsibility of the
network device driver to send and receive network packets. The Networking Server maintains
all state information about the network, such as TCP/IP connections and open TCP or UDP
ports. Currently MINIX supports a wide range of different network card families, including
gigabit (Intel Pro/1000 [27], Realtek 8169 and Broadcom [28]) and wireless network adapters
(Prism II based).

2.2.9 SMP

The latest version of MINIX implements support for SMP. Multicore systems allow processes to
run concurrently in MINIX. Due to the design of MINIX, context switching between processes can
become a possible performance bottleneck on unicore systems. Multicore systems can potentially
mitigate this effect. Since server processes can run on separate CPUs in a multicore environment,
context switching overhead can be spread among the cores to reduce its effect. Moreover, if the
number of CPUs is greater than the number of processes in the system, context switching can
be avoided all together. Additionally, server processes in MINIX share little (if any) memory.
Therefore locking overhead is minimal.

24

CHAPTER 2. BACKGROUND 2.2. MINIX

Currently the SMP implementation of MINIX is only different from standard MINIX in the kernel.
In short, the most important changes introduced to the kernel are:

Booting: When booting MINIX, only the first CPU runs. In the low level startup code
of MINIX, the boot CPU performs Intel’s SMP boot protocol [29] to bring all other CPUs
online.

Multicore Scheduler: The scheduling code is changed such that every CPU receives pro-
cesses to run and that a process is scheduled only for one CPU at a time.

Locking: Currently the implementation has a single big kernel lock which avoids race
conditions when writing to shared data, such as the process table.

APIC support:Intel SMP systems use a different interrupt controller called the Advanced
Programmable Interrupt Controller [30]. The APIC supports all basic functionality of the
older PIC and also offers Inter Processor Interrupts (IPT).

IOAPIC support:Another extra hardware component called the Input and Output Ad-
vanced Programmable Interrupt Controller (IOAPIC) [3I] deals with distributing external
interrupts from hardware devices to a configurable subset of CPUs.

25

2.3. SINGLE CHIP CLOUD COMPUTER CHAPTER 2. BACKGROUND

2.3 Single Chip Cloud Computer

The Single Chip Cloud Computer (SCC) is a research project by Intel Corporation. The SCC
project is introduced mainly for two reasons [32]. To promote manycore processor [33] and parallel
programming research [34]. As a result, several researchers are developing [35, B6] or modifying
applications [37, B8] and operating systems [39, 40] to run efficiently on the SCC. In addition to
increasing scalability [411 [42] [43], reducing power consumption [44] [45] is an important subgoal of
the SCC project. Eventually Intel aims to bring terascale computing [46] to single die computer
systems. ”Tera” means 1 trillion, or 1,000,000,000,000. Intel envisions to create platforms capable
of performing trillions of calculations per second (teraflops) on trillions of bytes of data (terabytes).
The SCC hardware prototype features 48 cores on a single die, which according to Intel has never
been done before [47]. Tt is designed to scale up to even hundreds or more of cores on a single die.
With the SCC, Intel is encouraging researchers to explore the possibilities of single die manycore
computer systems.

SCC Die
Tile Tile Tile Tile Tile Tile
[Ri—r{ R} Rt R——H{ R——HR
|
Tile Tile Tile Tile Tile ile
MC pm R R——{ R——H{ R——{R——H{R—— MC
|
Tile / ile Tile Tile Tile Jgile
[R et R Jrmmet=r{ R} (R] (R] R
Tile ile Tile Tile Tile J:ile
MC e R = R} R} (R} (R} (RF=—r= MC
|
VRC System Interface
FPGA
I PCl/e cable

| Management Console PC

&

Figure 2.9: Architecture of the Single Chip Cloud Computer.

26

CHAPTER 2. BACKGROUND 2.3. SINGLE CHIP CLOUD COMPUTER

Figure 2.9] illustrates the architecture of the SCC. It has a total of 24 tiles containing two Intel
Pentium (P54C) [48] processors. Intel has chosen the P54C because it has a relatively simple
design and is much smaller compared to newer processors. This allowed the designers to put more
cores on the die in the SCC prototype, also taking the available room and financial resources into
account. Additionally, many existing applications can already or easily be modified to run on the
P54C. The 24 tiles in the SCC are connected by an on-die high performance mesh network. As
indicated by the "R” in Figure 2.9] every tile has a special routing hardware component called
the Mesh Interface Unit (MIU) for transferring and receiving packets on the mesh. Tiles can send
packets to other tiles for inter-processor communication or to one of the four memory controllers
for reading and writing memory. Note that the current SCC does not have any extra hardware
such as a keyboard, mouse, display screen or even a local disk. The only way to interact with
the SCC is using a special PCI/e interface to the SCC’s FPGA from a Management Control PC
(MCPC). From the MCPC developers can load operating systems on the SCC, read and write
all available memory, interact with the individual software emulated consoles running on each
processor, control power management functions and more.

2.3.1 Tiles

The SCC consists of 24 identical tiles as presented in Figure [2.10] inter connected by an on-die
2D mesh network. In this section we describe each component on the tiles. First, every tile in the
SCC contains two P54C processors. Intel released the P54C processor in october 1994 and could
operate at frequencies between 75 to 120 MHz. Fortunately the P54Cs in the SCC are able to
operate at much higher frequencies between 100 and 800 MHz.

Both P54Cs are equiped with two levels of caches: level 1 and level 2. The level 1 cache is
internal on the P54C and is separated into instruction and data caches, each 16KB in size. Level
2 caches is are external components and have a capacity of 256KB. These caches have a cache
line size of 32 bytes, giving a total of 512 individual cache lines. One fundemantal design choice
of the SCC is that the caches are incoherent. In most standard multiprocessor PCs the caches
of individual CPUs are coherent, meaning whenever a CPU changes a memory value which other
CPUs have cached, they must all be notified. For only a small number of CPUs this is not yet a
serious performance bottleneck, but when hundreds or thousands of CPUs are put on a single die
it will be. Cache incoherent Therefore Intel decided to remove cache coherence in order to be able
to scale up the number of CPUs on a single die even further. This means that whenever a CPU
writes some data to memory, and thus also to its own cache, the other CPUs are not notified of
the changed data. Therefore when other CPUs attempt to read the changed data, they may read
stale values. This design choice is especially relevant for operating system programmers, as many
general purpose operating systems including MINIX are designed for coherent caches in a multi
processor environment. An important note about the caches for operating systems is that cache
lines are only flushed back to memory when writing to the last bit of a cache line [49].

Additionally, both P54C processors share the Message Passing Buffer (MPB) memory compo-
nent. The MPB aids applications and operating systems to implement message passing. Each
CPU has a 8KB partition of MPB space, 16KB in total per tile. Access to the MPB of a CPU
in the SCC is faster then accessing the DDR3 memory controllers. MPBs are not cached in the
level 2 cache, but only in the level 1 cache. Of course when reading the MPBs, a CPU needs to
clear the level 1 cache. Intel has introduced an extra instruction called CL1INVMB, which can be
used to clear level 1 cache lines containing MPB data. To determine the kind of data in the level
1 cache a special MPBT bit has been added to the cache lines. Only cache lines from the MPB
have the MPBT bit set and CL1IINVMB clears only the cache lines with the MPBT bit set.

27

2.3. SINGLE CHIP CLOUD COMPUTER CHAPTER 2. BACKGROUND

L2 Cache | Core0
256KB O P56C

Mesh
Interface Unit

I ’

L2Cache |, | Corel
256KB - P56C

Figure 2.10: Tile architecture design of the SCC.

Each tile also has a Mesh Interface Unit (MIU) which is responsible for routing packets on the 2D
mesh. According to Intel’s documentation [50] the MIU contains hardware logic for: (de)packeting,
command interpretation, address decoding, local configuration registers, link level flow control,
credit management and an arbiter. Operating systems do not need to access the MIU directly.

Finally, every tile in the SCC contains configuration registers. Operating systems running on
the SCC may want to change some configurable settings about the tile(s). It is possible for oper-
ating system designers to use the SCC configuration registers for this purpose. The configuration
registers are accessible via memory mapped I/O. Each tile has its own set of configuration registers
and is also available to all other tiles. There are a total of 12 different configuration registers as
shown in Figure 2.11] The LUTO and LUTI registers contain the physical address of the LUTs
(explained later in Section of core 0 and 1, respectively. LOCKO and LOCK1 is used for syn-
chronizing CPUs when they need to access a shared resource, for example the MPB. MYTILEID is
a read only configuration register and may be used by the operating system to obtain the local tile
and core ID. GCBCFG is a special register for configuring parameters and settings about the file
frequency and contains various reset flags. SENSOR and SENSORCTL are useful when using the
on-chip thermal sensors for measuring the heat produced by the hardware. L2CFGO0 and L2CFG1
are configuration registers of the level 2 caches for cores 0 and 1, respectively. Finally, GLCFG1
and GLCFGO are mainly used for triggering Inter Processor Interrupts (IPI).

28

CHAPTER 2. BACKGROUND 2.3. SINGLE CHIP CLOUD COMPUTER
Register Description Access
LUT1 LUT register core 1 Read/Write
LUTO LUT register core 0 Read/Write
LOCK1 Atomic Test and Set Lock Core 1 | Read/Write
LOCKO Atomic Test and Set Lock Core 0 | Read/Write
MYTILEID Tile ID Read
GCBCFG Global Clock Unit Configuration | Read/Write
SENSOR Thermal Sensor Value Read
SENSORCTL | Thermal Sensor Control Read/Write
L2CFG1 L2 Cache Core 1 Configuration Read/Write
L2CFGO L2 Cache Core 0 Configuration Read/Write
GLCFG1 Core 1 Configuration Read/Write
GLCFGO Core 0 Configuration Read/Write

Figure 2.11: SCC configuration registers description, access and offset

2.3.2 Memory Architecture

The SCC is equiped with a total of four DDR3 memory controllers. Each memory controller can
manage two DIMMs with each two ranks of capacities 1GB, 2GB and 4GB. This gives a maxi-
mum capacity of 16GB per memory controller, resulting in a total system wide capacity of 64GB.
Memory controllers in the SCC can operate at frequencies of 800MHz up to 1066 MHz.

Each CPU needs to access memory which is located at the memory controllers. Therefore there
must be a way to tell which parts of memory at the controllers belongs to which CPU(s). Intel
has come up with Lookup Tables (LUT) as a solution for this problem. LUTSs perform a mapping
of core addresses to system addresses. Every CPU has a private LUT which can map up to 4G of
system memory, which can be either of the type DDR3, MPB or configuration registers. Each slot
in the LUT can map 16MB of system memory data, which means there are a total of 256 LUT
slots maximum.

Figure illustrates the calculation of mapping of memory in the SCC using LUT’s. When
a program attempts to access a 32-bit core virtual address on a standard P54C, the address is
first translated from a virtual address to a physical address using the core’s Memory Management
Unit (MMU). After this translation the result is a 32-bit core local physical address which needs
another translation from the core address to the system address. The LUT translation takes the
upper 8-bits from the core 32-bit address to find the correct LUT entry slot. The LUT entry
contains the neccessary translation information to obtain the system address and routing informa-
tion. Destination ID is the tile destination ID for routing on the 2D mesh, where Sub Destination
ID specifies the type of memory for access: DDR3, MPB or configuration registers. Bypass is a
1-bit value which may be used for bypassing the MIU. Finally, the 46-bit system address value is
obtained by adding the bypass bit, 3-bit subdestination ID, 8-bit tile ID, 10-bit address extention
to the lower 24 bits of the 32-bit core physical address. Only the lower 34-bits of the 46-bit system
address get send to the destination specified by the tile ID. See Appendix [A] for the default LUTs.

29

2.3. SINGLE CHIP CLOUD COMPUTER CHAPTER 2. BACKGROUND

32-bit Virtual Address 32 bits
v

MMU
A 4

32-bit Physical Address 8 bits 24 bits

LUT
. Sub ;
Bypass | Destination ID Destination 1D 10 bits

; A 4

10 bits 24 bits

— 4

~N

34-bit System Address

Figure 2.12: Lookup Tables map local core addresses to system memory addresses.

30

CHAPTER 2. BACKGROUND 2.3. SINGLE CHIP CLOUD COMPUTER

2.3.3 Management and Control PC
In order to be able to use the SCC, there must be a MCPC connected by a PCI/e cable to the

SCC.

The MCPC is used to power on the SCC, load programs on the CPUs and as the system

console for operating systems running on the SCC. In addition to the PCI/e cable the MCPC
should have the SCC Software Kit installed. This is a Linux software distribution containing
programs for both command line and graphical management of the SCC hardware, including:

sccBmec

This application will either initialize the attached SCC Platform with one of default settings
or execute one or more dedicated BMC commands (e.g. "status”). It is required to run
this command with the -i option when power cycling the SCC in order to initialize the
system. Without proper initialization the SCC will not function. BMC stands for Board
Management Controller.

sccBoot
Starts an operating system on a selection of CPUs on the SCC. It is possible to boot the
default Linux operating system or a custom image.

sccBootlogs Outputs the boot messages of the operating systems started on the SCC. This
command is specific to the Linux operating system implementation.

sccDisplay Open the graphical virtual display of the selected CPUs on the SCC. The Linux
implementation provides a graphical console which can be viewed on the MCPC using this
command, including support for keyboard and mouse interaction.

sccDump This application reads memory content (or memory mapped registers) from the
SCC Platform. It is possible to address the memory controllers, the MPBs or the configura-
tion registers. Addresses need to be 256-bit aligned as this software reads whole cachelines.
The number of requested bytes may not exceed 1MB.

sccKonsole Opens the text console to Linux operating system instances running on the
selected CPUs. The console application connects to the Linux instances using an TCP/IP
connection to the CPUs using an range of uncachable DDR3 memory as packet buffers.

sccMerge Uses an input bootable image to generate boot image configurations for the
individual DDR3 memory controllers. This command is mostly used internally by the SCC
kit when booting operating systems on the SCC.

sccPerf Starts the Linux specific performance measuring widget. This application reports
the CPU load of the individual CPUs in the SCC.

sccPowercycle Completely restarts the SCC by turning the power off and on. After doing
a power cycle the sccBme application must be used to re-initialize the SCC before it can be
used again.

sccProductiontest Performs a range of Linux specific tests on the SCC.

sccReset This application can be used to reset the given subset of CPUs in the SCC. In
most cases sccReset is used after booting a tryout bootable image to reset the CPUs to a
known state. After a CPU is reset, it has stopped executing and will only begin executing
again until either sccBoot or sccGui is used to start a new operating system.

sccTcpServer This application provides remote socket based access to SCC using the sccKit
interface.

sccWrite This application can write to to system memory addresses of the SCC Platform.
It is possible to address the memory controllers, the MPBs or the configuration registers.
Addresses need to be 32-bit aligned and will be truncated otherwise. If it is required to write
smaller chunks, the solution is to perform a read-modify-write.

31

2.3. SINGLE CHIP CLOUD COMPUTER CHAPTER 2. BACKGROUND

e sccGui Starts the graphical interface for managing the SCC. It is possible to do anything
using this application in GUI mode which is also possible using the command line programs,
such as booting operating system images and reading or writing memory.

32

Chapter

Design

Our ultimate goal is to run MINIX as a single system image on the SCC. Unfortunately, we cannot
use the MINIX SMP implementation for this purpose mainly due to its cache incoherent nature
and lack of SCC specific hardware support. To implement the MINIX operating system on the
SCC as a single system image, several major changes are needed to multiple components, including
the kernel. This requires a careful design and in this chapter we present the design we choose for
the MINIX SCC implementation.

3.1 Requirements

The overall design of the MINIX SCC implementation should be extendable, which means that
future work can be done without re-doing previous work. Therefore we have attempted to think
of which requirements the design should meet, in order to make future work as easy as possible:

e Keep Core Principles: Any changes to MINIX for the SCC should not remove any of
the core principles, such as isolation, least privilege, fault tolerance, dynamic updating or
standard compliance.

e Cache Incoherence: The design of MINIX should be changed such that it can run in a
cache incoherent environment like the SCC.

e New Boot Code: Since the SCC lacks several hardware and software components from
the PC, it requires a custom bootstrapping implementation.

e Cross Core IPC: Processes must be able to send messages to processes at other CPUs in
the SCC. Therefore, we must extend the current IPC mechanisms to support global IPC.
Currently processes in MINIX communicate using endpoint numbers. It is not our intention
to remove the endpoints, but to change the design such that processes can address remote
processes in addition to local processes. The global addressing design should allow any pair
of processes to communicate, including all processes in the MINIX boot image. In addition
to global addressing, there should be some mechanism by which processes can find remote
processes.

e Process Migration: Eventually it should be possible to migrate processes on the SCC.
This means moving processes from one CPU to another, for example to balance the CPU
load. The IPC design should not become a problem when implementing this.

e Bulk Memory Copy: We need a fast way to copy large portions of memory between
processors, for example to implement process migration and UNIX sockets. Due to the
cache incoherency of the SCC, this is not trivial.

33

3.2. CACHE INCOHERENCE CHAPTER 3. DESIGN

e Global View: Applications running on a core in the SCC should have the same view of
resources, such as files, the process list, shared memory and network connections. This
requires either a single instance of each server in the SCC or multiple instances which syn-
chronize state, depending on performance implications. Additionally, we need to decide
which processes are visible to other cores.

e Parallelizing Servers: Currently the server processes in MINIX work together in a sequen-
tial fashion. This means the server processes are often block waiting on each other. In order
to gain higher performance on manycore systems, the servers must be parallelized such that
they can handle requests concurrently.

Since all requirements cannot fit within the scope of one master thesis, we focus in our work
on providing a bootable MINIX implementation for the SCC with an efficient cross core IPC
mechanism. Additionally, we assume all processes require global IPC.

3.2 Cache Incoherence

The first challange for our design is to deal with the cache incoherency of the SCC. A recent
design principle which allows running an operating system in cache incoherent environments is
the multikernel [51]. In this design each CPU has their own local instance of the operating system
kernel, with data and variables kept in private local memory only. The kernel instances do not
share any datastructures via shared memory but instead use message passing to communicate any
changes in the operating system state. Having multiple kernel instances with only local memory
removes the requirement of shared cache coherent memory.

The multikernel design principle matches closely with the microkernel design. Since microker-
nels contain minimal functionality, they also contain minimal state which must be communicated
to other kernels. The majority of state information in a microkernel based operating system is
stored in server processes, which already use message passing to communicate state or invoke
services.

Figure shows how we applied the multikernel principle to MINIX. First, every CPU on the
SCC runs an instance of the MINIX microkernel. The microkernels do not share any data, but
use the MPBs to communicate changes to the internal state, such as the process table. Second,
every CPU has all relevant MINIX servers and drivers including PM, VFS, RS and VM. User
applications running on a particular CPU only need to send messages to local instances of the
servers. However servers and drivers are able to to send messages to remote instances on other
CPUs with help from the kernel. The kernel IPC code should be extended to use the MPBs for
sending messages to remote processes.

3.3 Global Addressing

As described in Section MINIX uses endpoints for addressing local processes. A single
endpoint can point to any of the currently 1024 maximum processes in the MINIX operating
system. When implementing MINIX on the SCC, processes should be able to do IPC with any
other process running on any other core. Therefore, to provide global addressing we need to
have global endpoints, in addition to the local endpoints. This requires changing the endpoints
mechanism such that it is possible to point at remote processes. Additionally, the global endpoints
solution should also satisfy the requirement for process migration. Global endpoints should not
become a problem when migrating processes between CPUs. In the following Section we
present our solution for global endpoints. Additionally, from Section and on we discuss other
alternative designs we considered. In every Section we evaluate the advantages and disadvantages
of the particular design.

34

CHAPTER 3. DESIGN 3.3. GLOBAL ADDRESSING

User User S User User User S User
App App App APP APD App
Process S VFS Data Driver Process VFS Data Driver
Manager Server || Store ||Manager| Manager Server || Store |Manager|
Network File amm Device || Device Network File am Device Device
Server | | Server ‘\ Driver Driver Server Server Driver Driver

1 \

Core A Core B

Figure 3.1: The multikernel design principle applied to MINIX.

3.3.1 Remote Process Stubs

Our solution for the global endpoints design is to store remote processes in the kernel process table
with a special remote flag. We call such remote process entries remote stubs. Conveniently the
kernel’s struct proc already contains a field p_cpu from the SMP implementation for storing the
CPU number. When implementing process migration, this field should be updated. Additionally,
the p_rts_flags field may be used for the remote flag. This field contains flags which, if set, prevents
a process from being scheduled. Of course process table entries for remote processes should never
be schedulable, so the p_rts_flags field is perfect match.

CPU #0 CPU #1
Proc O Proc O
Proc 1 Proc 1
Proc 2 Proc 2
Proc 3 Proc 3
Proc 4 Proc 4
Local Process { A: Proc 512 Proc 512
send(Proc 513 B: Proc 513)receive 0~ Remote
Proc 514 Proc 514 => 512 @ #0 Process
:teéné)be#iirocess{ Proc 515 => 513 @ #1 Proc 515 at CPU #0
Proc 1022 Proc 1022
Proc 1023 Proc 1023

Figure 3.2: Set a special remote flag in the kernel process table to implement global endpoints.

Figure illustrates how two processes A and B can communicate with this design. Process A is
located on CPU 0 with local process slot 512, process B resides on CPU 1 with local process slot
513. When process A wishes to send a message to process B, it sends a message to the remote

35

3.3. GLOBAL ADDRESSING CHAPTER 3. DESIGN

stub endpoint of process B at CPU 0, which has slot 515. When delivering the message to process
B, CPU 1 can fill in the source endpoint with the remote stub endpoint of process A at CPU 1,
which has slot 514. An advantage of this design is that processes can still use the endpoints for
remote endpoints just like they would for local processes. Additionally, the design is relatively
simple to implement with no large changes to the process table. Finally, a minor issue with this
design is that the Process Manager currently chooses new process slot numbers. Since PM cannot
look directly in the kernel process table, it could choose a slot which is already taken by a remote
stub. The solution is to let the kernel choose slots.

3.3.2 Alternative: Encoding Endpoints

Another solution we came up with is to encode the CPU number inside the endpoints. As shown
in Figure the upper 8 bits of the endpoint number could be used to contain the destination
CPU number. For endpoints pointing to remote processes running on another CPU, the upper 8
bits would be non zero and for local endpoints the upper 8-bits would be zero.

An advantage of this design is that it is very simple to implement. No drastic changes are needed
in the kernel nor in any of the user processes. However, when a user process wants to do IPC
with another process running on a different CPU, it must know in advance the destination CPU
number and put it in the upper 8-bits of the endpoint. A much bigger problem with this design
is that encoding CPU numbers in the endpoints makes process migration much harder, as the
endpoints would need to be changed in all user processes on migration.

32-bit Endpoint Number

A
4 N\

‘ 8 bits ‘ 24 bits

—

Destination CPU ID

0 = local endpoint
>0 = global endpoint

Figure 3.3: Encoding endpoints with the destination CPU number.

3.3.3 Alternative: Splitting Process Slot Address Space

Another way to design the global endpoints in MINIX on the SCC is to split the kernel process
table in two halfs. One half contains local only processes from slot 0 until 1023 and the other half
contains entries for (remote) processes ranging from slot 1024 until 2047. Any process which has a
slot number in the lower half is not visible to other CPUs. Processes with a slot in the upper half
are visible to all other CPUs and have the same slot number on all CPUs. The endpoints remain
unchanged in this design. Any endpoints pointing to the lower half, the local only processes, still
do local TPC. Endpoints pointing to processes in the upper half, thus processes which may run on
other CPUs, should trigger sending a remote IPC message to another core if remote. Figure [3.4]
illustrates the split process table design. Any remote processes in the upper half of the kernel
process table should contain a flag indicating that its a remote process, a CPU number and must
not be flagged schedulable.

36

CHAPTER 3. DESIGN 3.3. GLOBAL ADDRESSING

Splitting the process table in a local-only and remote-only half solves some challenges when imple-
menting MINIX on the SCC. For example, the endpoints are independent of the CPU numbers,
which makes process migration much easier. Additionally, the endpoint design for remote pro-
cesses is transparent to user processes. The endpoints pointing to remote processes look the same
compared to endpoints of local processes from the perspective of user processes. However, one
problem with this design is to decide when a process should receive such remotely visible slot.
Should the parent process inform the kernel before, during of after creating the child process that
it should receive such remote slot? In the case a process needs to do remote IPC in the future,
it must know this in advance. Moreover any process in the MINIX boot image cannot do remote
IPC with this design, as they have special static low numbered endpoints. Finally, this design
requires synchronization when adding and removing process table entries, which may be a difficult
and costly operation in a 48-core environment.

CPU #0 CPU #1

Local-only
processes

send()

Remotely
Visible
processes

{Proc, CorelD #} {Proc, CorelD #}

Figure 3.4: Splitting the kernel process tables to distinguish local /remote processes.

37

3.3. GLOBAL ADDRESSING CHAPTER 3. DESIGN

3.3.4 Alternative: Global Process Table

In an attempt to solve the problems with earlier designs, we came up with yet another global
endpoints design. In order to let all processes in MINIX do remote IPC, including the boot image
processes, we modified the design with another global process table separately from the local kernel
process table. When a process wants to do IPC to another remote process, it would need to have
its global endpoint which points to the entry of the destination process in the new global process
table. Therefore any process which wishes to do remote IPC and be visible to all other processes
would need to have a Global Process Slot in the global process table next to its local process slot.
Of course any program from the boot image is also able to get such global slot. Delivering local
TPC messages to local process endpoints still happens the same as in default MINIX.

CPU #0

CPU #1
Proc 0 Proc 0 Proc 0 Proc 0
Proc 1 Proc 1 Proc 1 Proc 1
< Proc 2 PProc 2 PProc 2 Proc 2
send() . Proc3 Proc 3 Proc 3 Proc 3
ProcT—| Proc4, #1 - Proc 4, #1, 514 Proc 4
Proc 512 Proc 512, #18 Proc 512, #18 Proc 512
Proc 513 Proc 513, #7 Proc 513, #7 Proc 513
Proc 514 Proc 514 Proc 514 Proc 514
Proc 515 Proc 515, #1 Proc 515, #1 Proc 515
Proc 1022 Proc 1022 Proc 1022 Proc 1022
Proc 1023 Proc 1023 Proc 1023 Proc 1023

{Proc, CorelD #, Proc}

H_/%/_/

Local Process Table Global Process Table

Figure 3.5: Assigning a Global Process Slot to solve the global endpoints problem.

Although this design solves some problems it also introduces several new ones. The design re-
quires a clear distinction between local and remote endpoints. Therefore user processes must also
use different IPC primitives when doing remote IPC or pass additional flags to the current IPC
primitives indicating they mean global endpoints. Either way, the user processes in MINIX would
need to be changed for using the global endpoints in this design. A more fundemental problem
with this design is what would happen if a process wishes to receive from the ANY source. How
would the kernel indicate to the process the message is from a local or remote endpoint? Finally,
this design also requires synchronization when creating or removing entries from the new global
process table.

3.3.5 Alternative: Userspace IPC Server

A more different design we looked at is having a dedicated userspace IPC server for remote
messaging. Whenever a local process wishes to send a message to another remote process running
on a different CPU, it would send a message to the IPC server with the payload message embedded.
The IPC server would have a known static endpoint so that user processes can always find it. Then
the TPC server should take care of delivering the message to another IPC server instance running
on another CPU where it would finally be delivered to the destination.

38

CHAPTER 3. DESIGN 3.4. ENDPOINT DISCOVERY

Having a userspace IPC server deliver remote messages will cost additional context switching
overhead. However, this is not the biggest problem of this design. The problem which this design
does not solve is: how can user processes address other processes running on other cores? Since
user processes only have the endpoint of the IPC server, there is no obvious way by which they
can achieve this. On the other hand, it is possible to combine this alternative design with our
solution discussed in Section [3:3:1] but it would not be helpful.

CPU #0 CPU #1
Proc O Proc 0
Proc 1 Proc 1
IPC Server Proc 2 Proc 2
{ Proc 3 —— Proc 3
Proc 4 Proc 4
send()
Proc 512 Proc 512
Proc 513 Proc 513
Proc 514 Proc 514
Proc 515 Proc 515
Proc 1022 Proc 1022
Proc 1023 Proc 1023

Figure 3.6: Use a dedicated userspace IPC server with a known endpoint for remote IPC.

3.4 Endpoint Discovery

Another challange for the design is to determine how processes can find global endpoints of a
particular other process. Our solution is to publish global endpoints. As illustrated by Figure|3.7]
the idea is that whenever a process wishes to do remote IPC, it should publish itself to the local
DS server using a unique key. Then the local DS server would broadcast to all other DS server
instances running on the other CPUs that it has a new process which is publishing itself. The
remote DS server instances would then ask the kernel to install a remote stub for the publishing
process in its process table. Then whenever a process wants to do IPC to another possibly remote
process, it asks the DS server for the endpoint by giving it the unique keyname. The process then
receives an endpoint number and can use any of the standard IPC primitives available in MINIX
on it.

An advantage of this design is that the local DS server already functions as a local naming server

for finding endpoints. The DS server code only needs to be extended to implement the broad-
casting and installation of remote stubs. Note that this design does not require synchronization

39

3.5. IPC MESSAGE PASSING CHAPTER 3. DESIGN

of kernel process tables. The remote stubs may have different local process ID entries without
problem, as long as the local DS servers return the correct endpoint for the given unique keynames.
Note that any process which wishes to do remote IPC must publish itself, including applications,
since remote CPUs must be able to fill in the correct source endpoint of remote messages using a
stub endpoint. On the other hand, it is possible in this design to restrict to which other CPUs to
publish endpoints. Finally, since the endpoints remain unchanged for user processes, it is easier
to implement process migration since only the kernel process tables need to be changed.

CPU #0 CPU #1
Proc 0 Proc 0
Proc 1 Proc 1
DS Server Proc 2 Proc 2
{ Proc 3 Proc 3
Proc 4 make_stub() Proc 4
publish(“test”) lookup(“test”)
Proc 512 Proc 512,#0, 514
Proc 513 / Proc 513
Proc 514 Proc 514 send(
Proc 515 Proc 515
Proc 1022 Proc 1022
Proc 1023 Proc 1023

Figure 3.7: Publishing an endpoint to the DS server for remote IPC.

3.5 IPC Message passing

Another design decision for the implementation of MINIX on the SCC is about how the IPC
message passing between the CPUs should work. The first choice is to decide where the intercore
messages should be stored. As discussed in Section the SCC has a special dedicated memory
space called the MPB which has been designed with message passing in mind. Relevant to whether
the MPB is useful for the MINIX implementation is to see how many messages can fit in the MPB.
Since cache lines in the SCC are only written back to memory when touching the last bit of the
32-byte cache line, the maximum number of available space for messages in the MPB is limited
by the amount of cache lines available in the MPB. Unfortunately, as discussed in Section [2.2.3]
MINIX messages are 36 bytes, which is slightly larger than a single cache line. Therefore we are
required to reserve two cache lines (64 bytes). On the other hand, the extra space gives us room
for storing relevant meta data about the message. When dividing the S8KB MPB size by the size
of two cache lines, we get:

8192 / 64 = 128 messages

40

CHAPTER 3. DESIGN 3.5. IPC MESSAGE PASSING

Now that we know we can fit in 128 message maximum per MPB, we can look into different designs
for storing messages in the MPB. In Sections[3.5.1] and [3.5.2) we discuss two different designs which
we both implemented and evaluated.

3.5.1 Split Shared Queue

One way to implement IPC message passing between the CPUs is to split the MPBs into equaly
sized slots, allocating one slot for every CPU in the system. As illustrated by Figure [3.8] when a
CPU wishes to send a message to another CPU it can write the message in its slot at the MPB of
the destination CPU. The advantage of this design is that CPUs do not need to obtain a lock when
writing to the destination CPUs MPB. On the other hand the maximum amount of messages that
can be in transit is quite low:

8192 / 64 / 48 = 2 messages

An important problem in this design which may occur without careful programming is an IPC
deadlock. It may happen that at CPU 0 there is a process which wishes to receive only from
another specific source process residing on another CPU. The source process has a message ready
to be send, only the MPB slots are already filled with messages from another process destinated
for the same process at CPU 0. In that case all processes would be waiting forever for more space
to become available in the MPB. Therefore, it is important that the implementation takes care of
removing messages from the MPB into a different local buffer as soon as it finds the message to
avoid closed receive() deadlocks.

CPU #0 MPB CPU #'1 MPB
Slot #0 }l& #0
Slot #1 e S ull Slot #1
Slot #2 ang'giage Slot #2
Slot #3 Slot #3
Slot #4 Slot #4
Slot #5 Slot #5
Slot #6 Slot #6
Slot #7 Slot #7
Slot #46 Slot #46
Slot #47 Slot #47

Figure 3.8: Splitting the MPB is separate slots per source CPU to avoid locking.

41

3.5. IPC MESSAGE PASSING CHAPTER 3. DESIGN

3.5.2 Lock Shared Queue

A different approach for IPC message passing between CPUs is to view the MPB as a big lock
shared queue. When a CPU wishes to send a message to another CPU, it needs to aquire either the
appropriate LOCKO or LOCKI1 register before it can write new messages to the MPB. As shown
in Figure the first cacheline(s) contains the current head and tail of the queue, such that both
the receiving and sending CPUs known when the queue is full. The advantage of this design is
that it allows the maximum amount of messages possible in transit. On the other hand the locking
of the queue may become a performance problem. Also note that the receive() deadlock scenario
still applies in this design.

CPU #0 MPB CPU #1 MPB
|
head=1,tail=3 head40,tail=0
Slot #0)?fot #0
Slot #1, src=CPU#8 Slot #1
Slot #2, src=CPU#1 Slot #2
Write
Slot #3 message Slot #3
Slot #4 Slot #4
Slot #127 Slot #127

{ Slot#, source CPU# }

Figure 3.9: Lock-sharing the MPB for sending messages between CPUs.

3.5.3 Event Notifications

Another design choice regarding the IPC messaging is to decide when the MINIX kernel should
look in the MPBs. For example, CPU 0 writes a message in the MPB of CPU 1. How does CPU
1 know that there is a new message from CPU 0?7 One way to deal with notifying other CPUs of
new messages in the MPB is to use an Inter Processor Interrupt (IPI). It is possible to trigger an
interrupt of other CPUs in the SCC by using the GLCFGO or GLCFG1 configuration registers.
Whenever a CPU receives such interrupt, it can look in its MPB to see if there are new message(s)
from other CPUs. Performance of message delivery will be bounded by the performance of IPI
delivery in this design.

Polling for new message in the MPBs is also possible. For example, the kernel can read its
MPB at regular intervals or particular code sections. Polling can be done every time a process
invokes a kernel trap, which is quite often. In that scenario the IPI are not necessary anymore.
Performance of message delivery in this design is probably closely related to the number of kernel
traps received and therefore the system load as a whole. A possible problem which may arrise in
this design is that there are (temporarily) no kernel traps being delivered when the system is idle.
In that case the kernel should either poll for new messages in a busy loop, or poll at regular time
intervals.

42

Chapter

Implementation

This chapter describes our implementation of MINIX on the SCC in detail. Several components
in MINIX have been added, modified or disabled. In Section [£.1] we give a high level overview of
what changes were needed to which components. Later in Sections [1.2] and on, we look in detail
to each modified component.

4.1 Overview

The MINIX SCC implementation required changes to several components, including the kernel,
servers, libraries, drivers and build scripts. In short, the following changes are introduced:

Custom Bootloader Booting an operating system on the SCC requires a radically different
procedure than on a PC. Since the SCC has no BIOS, Disk, CD-ROM, floppy, keyboard
nor screen support, the bootmonitor does not work on the SCC. We implemented a custom
bootloader for MINIX on the SCC, which is described in detail in Section [£.2]

Kernel The component in MINIX which required the most changes for the SCC implemention
is the kernel. Most changes involved removing incompatible code, modifying existing func-
tionality to support the SCC and extending the kernel for SCC specific procedures. The
following is a summary of all kernel changes:

Unsupported Hardware Many hardware components on a PC do not exist on the SCC,
which include ACPI, UART, PIC, PIT and IOAPIC. It is critical to disable any access
to non existing hardware, as otherwise execution results are unpredictable or in some
cases the kernel crashes. Unfortunately, there is no easy configurable way in MINIX
to disable these components. We had to manually update the kernel code and retry
booting on the SCC in an iterative process, every time solving one or more offending
code occurences. Additionally, in the case of PIT, PIC and IOAPIC we had to modify
the code to support other hardware, which is APIC.

APIC Every core in the SCC incorporates an APIC controller. Fortunately, MINIX already
supports APIC from the SMP implementation. However, we had to modify the APIC
implementation for the SCC in two places. First, the APIC timer calibration normally
happens in MINIX using the PIT, which does not exist on the SCC. We changed to
APIC timer calibration to use the configurable value of 800MHz, which is the highest
possible tile frequency. Second, the APIC initialization is modified to support capturing
the SCC specific IPIs.

SCC Extensions The kernel has been modified to support all SCC specific hardware. First,
we modified to kernel such that it maps MPB memory and configuration register 1/0
memory in its own address space. Second, the implementation supports utilities for

43

4.1.

OVERVIEW CHAPTER 4. IMPLEMENTATION

reading and writing SCC specific registers, detecting online CPUs, sending and receiving
IPIs and using the per tile locking mechanism.

IPC As discussed in Section our design uses remote stubs for global endpoints. We
modified to kernel IPC code to detect remote stubs and invoke SCC specific subroutines
for any of the IPC primitives. The kernel also creates remote stubs for all remote DS
instances when it boots. Additionally, we implemented both MPB designs, split shared
and lock shared. Finally, our implementation also supports both interrupt and polling
mode. In Chapter [5] we evaluate which design shows the best performance.

Idle Process Idle is a special process in MINIX which runs only when no other process
wants to be scheduled. In default MINIX, the CPU is switched to low powered mode
inside the idle process. For the SCC implementation, we modified the idle process to
busy loop on the MPB, if the implementation is configured for polling.

Constants Some constants in the default MINIX kernel are modified in our implementation.
First, the SAMPLE_BUFFER_SIZE determines the size of the profiling buffer inside the
kernel. This allows the kernel to save performance profiling information in the sample
buffer. Per default, this buffer is configured for 80MB. In the SCC implementation
we removed this buffer to reduce memory overhead. Additionally, NR_SYS_PROCS
defines how many server processes MINIX supports at maximum. We increased this
number to 256 to make more room for the remote stubs.

Debugging When developing the custom bootloader, we faced many difficulties to debug
boot problems. Often when booting the kernel failed, the CPU would reset and we
got very little (if any) debug output. In attempt to tackle the issues, we modified the
startup code of the kernel to load interrupt support as early as possible to capture
exceptions. Additionally, we modified the kernel exception handler output to output a
full register dump of the CPU and installed debug sccprintf() statements throughout
the kernel.

Kernel Calls To allow servers in MINIX to read and write SCC specific information,
we added the new sys_scc_ctl() kernel call. For example, a server process can use
sys_scc_ctl() to read the core and tile ID it currently runs on. Additionally, the
sys_getkinfo() is extended with GET_NEXTPROC and GET_SCCSTATS arguments,
for retrieving the next free process slot and SCC specific performance statistics, respec-
tively.

DS As discussed in Section [3.4] our design allows servers to publish themselves globally on the

SCC. We modified DS in our implementation to support publishing global endpoints. DS is
responsible broadcasting any new publishings to all other DS instances and for asking the
kernel to create remote stubs.

VM The VM server is unchanged in our implementation with one exception. VM has a con-

stant MAX_KERNEL_MAPPINGS, which defines the maximum kernel mappings. In default
MINIX the value is 10, but for the SCC we need more to map all MPB and configuration
registers in memory. We changed this value to 128.

PM In default MINIX, PM chooses process slot numbers for new processes. However, since the

kernel needs to install remote stubs, PM could choose a slot which is already taken by a
remote stub. Therefore, we modified PM to ask the kernel what the next slot should be with
sys_getkinfo(GET_NEXTPROC).

TTY Default MINIX uses a VGA screen and PS2 keyboard as the system console. Unfortunately,

neither exists on the SCC. Additionally, the TTY driver uses the BIOS in some places which
the SCC also does not have. The only allowed output mechanism on the SCC is by writing to
the serial port, such that the MCPC can capture the serial data and display it. Unfortunately,
the full UART is not available on the SCC, so reading or configuring the serial port is not

44

CHAPTER 4. IMPLEMENTATION 4.2. BOOTCODE

supported. Therefore, in our implementation we modified the TTY driver to only write to
the serial port and disabled all references to the BIOS, keyboard, VGA screen and UART.

Ipctest In order to test and benchmark our implementation, we developed the Ipctest server.
This server can generate remote and local IPC traffic and supports different test scenarios,
including one-to-one, one-to-many and many-to-one.

RAM Disk When starting the MINIX operating system, the RAM disk plays an important
role. It contains an in-memory file system with configuration files, startup scripts and
programs which are needed to start the rest of the system. In default MINIX it starts
several components which the SCC does not have, including ACPI driver, PCI server, Disk
driver and INET server. All are disabled in our implementation. Additionally, we added a
small script to start Ipctest server instances.

Headers The MINIX SCC implementation has additional header files which allows developers
to configure the implementation. For example, these headers files can enable or disable
debugging, interrupt mode and polling mode.

System Library In our implementation we added asynput(), asynflush() and asynwait() to the
libsys library. These functions allow more efficient management of the asynchronous mes-
sages table used in the Ipctest server. Additionally, we increased the size of the asynchronous
messages table to 8K to allow submitting more asynchronous messages using one senda()
call.

Applications We added one new application, which is the seq command. It allows creating loops
in shell scripts more conveniently, which was needed in the modified RAM Disk startup
scripts.

Build Scripts The MINIX operating system is compiled using Makefiles, which describe what
source files and compiler flags are needed for a program. Since the SCC has two P54C
processors, MINIX must be compiled for specifically the P54C. Therefore we added the
appropriate flags to the Makefiles. Additionally, more Makefiles were added for every new
component described earlier.

4.2 Bootcode

Since the SCC has no BIOS, disk, floppy nor CD-ROM support, the default MINIX boot code
does not work on the SCC. In our implementation we completely rewrote the bootstrap code. This
Section explains all relevant details on the new startup code.

To start an operating system on the SCC, the user must use the sccGui program on the MCPC to
select and upload a operating system image. The image should be in the Intel specific OBJ format.
This format describes the operating system code and data in hexadecimal, text encoded format.
Fortunately, the Linux implementation for the SCC provided by Intel already contains a program
called bin20bj to convert a binary OS image to the OBJ format. Our implementation uses the
bin20bj program to convert our own binary boot image to OBJ. As described in Section [2:2.1]
the MINIX kernel requires a boot image containing several core servers for bootstrapping. Note
that the MINIX boot image is different from the OS image needed to start an operating system
on the SCC. The OS image should contain at least a bootloader with a kernel and optionally more.

Figure [£.1] shows the contents of the MINIX OS image. When CPUs in the SCC receive a reset
signal from sccGui, each core starts execution at the reset vector. The reset vector is a predefined
memory location, namely address OxFFFFFFF0. The MINIX OS image contains a small piece of
code at the reset vector, which jumps to Bootreset.S at the beginning of the MINIX bootstrapping
code on address 0x90000. Bootreset is an assembly program responsible for the following:

45

4.2. BOOTCODE CHAPTER 4. IMPLEMENTATION

0x90000 =<

0x100000 =< Loadminix.c

Boot Image

0x104000 <

Power On

7

OXFFFFFFFO =<

Figure 4.1: Contents of the MINIX OS image for booting on the SCC.

46

CHAPTER 4. IMPLEMENTATION 4.3. DS

Initializing Segmentation Most Intel based CPUs offer a mechanism called segmentation [52]
to provide memory protection. With segmentation, memory is divided in different parts
called segments. Every segment has configurable access permissions, such as read(only),
write(only) and whether it can be used by unprivileged programs. The bootreset program
is responsible for initializing segmentation

Switching to Protected Mode Additionally the Bootreset program must switch to protected
mode [53]. When the CPU is turned on, it operates in 16-bit realmode. MINIX requires
32-bit protected mode, which allows more system memory and enables memory protection.

Allocate Temporary Stack In order to continue to the next program, the stack must be ini-
tialized. Bootreset allocates a 8KB stack and pushes the address of the MINIX boot image
on it.

After the Bootreset.S program finished, it jumps to the Loadminiz.c program at address 0x100000.
Loadminix is a more complex C program which implements similar functionality as the bootmon-
itor. In short, the Loadminix program includes:

Image Validation The first task of the Loadminix program is to validate the boot image. This
is needed to prevent accidentally loading an invalid image. Inside the boot image there are
several predefined magic numbers, which the Loadminix program reads and checks. If an
incorrect magic number is found, the boot image is rejected and MINIX does not boot.

Image Relocation Since the MINIX boot image only contains code and data, there is no extra
room reserved for the heap in the boot image itself. However, the kernel expects that the
bootloader loads all programs from the boot image in memory, include code and data but
also reserve room for the heap. Therefore, the Loadminix program scans the boot image,
and relocates the programs to another memory location to allocate heap space. Additionally,
the heaps are cleared to zero, including the kernel heap.

Kernel Arguments Another task of the Loadminix program is to collect kernel arguments. This
includes a list of A.OUT headers from the boot image and optional configuration flags, such
as debug mode. One kernel parameter is critical for booting and running MINIX, which is
the memory map parameter. It defines which memory locations are used and which ones
are free. An incorrect setting could cause VM to allocate memory pages twice to different
processes.

Once the Loadminix program completed the above tasks, it must jump to the kernel. At that point,
the bootstrapping code is done and the kernel takes over execution. The kernel then schedules all
programs from the boot image to finalize the boot process.

4.3 DS

As described in Section [3.4], our endpoint discovery solution uses DS to publish global endpoints to
all cores in the SCC. In the implementation, we modified the following in the standard DS server.
First, in default MINIX, RS is the only server which is allowed to publish endpoints to DS. We
removed this restriction such that servers can ask DS directly to publish themselves. Second, we
extended the publishing code in DS with the new DFS_REMOTE_PUB flag. If it is set, DS will
treat the publish request as a global endpoint request. Otherwise, it assumes the publish request
is for a local endpoint only. Finally, when DS starts it asks the kernel which CPUs are running
using the new sys_scc_ctl() kernel call. This is necessary, as DS needs to know to which other
remote DS instances it should forward new publish requests.

47

4.4. KERNEL CHAPTER 4. IMPLEMENTATION

i o

I

g@ == [[<¢=
00) DOPmNC

erver wants to publish (b) DS forwards to all others (c) DS receives acknowledgements

—
o

N
02]

Figure 4.2: Publishing a global endpoint to all cores.

As shown in Figure DS publishes a global endpoint in three steps. First, the server sends a
publish request message to DS using the DFS_REMOTE_PUB flag. The publish request message
must contain a unique keyname. This keyname is later used by other servers, possibly on other
CPUs, to find the endpoint. When DS receives the message in Figure it detects the sender
requests a global publish. DS proceedes to the next step in Figure [f.2D] which is to forward the
global publish request to all other DS instances at other CPUs in the SCC. DS only forwards
the publish requests to DS instances on CPUs which are actually online. When the remote DS
instances receive the publish request, they create a remote stub for the server and send back an ac-
knowledgement message. Once all acknowledgements arrived at the local DS server in Figure
it replies back to the server to unblock it. At that point, the server has an endpoint on all CPUs
and other servers can find the corresponding endpoint using the unique key.

Note that DS does not immediately reply back to the sender when it first received the global
publish request. It must wait with sending the reply until it knows all other CPUs have installed
the remote stub. If DS would not wait, the server could start sending messages to other remote
servers. But since some CPUs may not have installed a remote stub for the sender, the kernel
does not know what source endpoint it should put in the messages.

4.4 Kernel

In order to implement the cross core IPC mechanism, we had to make several changes to the
kernel. This section describes in detail the most important changes for both synchronous and
asynchronous messaging.

4.4.1 Process Structure

As described in Section [3.3.1} our solution for global addressing is to install remote stub processes
in the kernel process table. In the implementation, we reused many existing fields from the process
structure, which is fully listed in Appendix[B] First, the p_cpu field from the SMP implementation
can be reused for our work to also store the CPU number of a remote stub. Second, we added the
RTS_REMOTE flag for the p_rts_flags field, indicating the process entry is a remote stub. This
also prevents the remote stub from being schedulable, because the p_rts_flags field determines if a
process is schedulable in MINIX. If it is zero, the process can be run, otherwise it must never be
scheduled. Finally, we also needed to add a few new fields, including:

Remote Send Queue The SCC messaging code keeps track of a list of processes which are
sending one or more message(s) to remote processes. This is required, as sometimes when
a process tries to send a message to a remote process at a particular CPU, the destination
MPB may be full. In that case, the SCC messaging code should retry transmission later for
each process on the remote send queue.

Remote Deliver Queue This field is used for fast remote message delivery. Whenever the SCC
messaging code receives a message from a remote process at another CPU, it first tries to

48

0O Utk Wi

CHAPTER 4. IMPLEMENTATION 4.4. KERNEL

deliver it immediately. If the message cannot be delivered immediately, for example because
the destination process is not currently receiving, the message is stored in a temporary
buffer. Additionally, the temporary buffer is added to the Remote Deliver Queue of the
local process. Eventually, when the local process invokes receive(), the remote message is
consumed and the buffer is removed from the remote deliver queue.

Stub Remote Endpoint When a local process sends a message to a remote process using its
published global endpoint, the kernel must know the local endpoint of the actual process at
the remote CPU. The kernel can then put this endpoint number as the destination on the
message in the MPB, such that the remote kernel can deliver the message to the correct
process.

Published Remote Endpoints When a published process sends a message to a remote process,
the kernel must also fill in a source endpoint. Since the global endpoint of a published process
may differ on the CPUs, the kernel must know what the endpoint of a published process is,
at the remote side.

4.4.2 Synchronous IPC

When a process on a particular core in the SCC wishes to send a message to another process on
a different core, the kernel needs the following. First, the kernel needs the message to be send,
including the source endpoint of the sender. When sending the message to the other core, the
remote kernel must know from which process it came. As discussed in Section [£.4.1] we added the
Published Remote Endpoints field to the process structure for this. On sending, the local kernel
writes the endpoint number of its published stub at the remote side in the MPB. When the remote
kernel reads in its MPB, it will find a new message with the source endpoint of the remote stub
of the sender.

typedef struct

{
message data; /* Payload including source x/
endpoint_t dest; /* Destination endpoint x/
int status; x Contains result flags x/
char padding [SCCMSG.PADDING|; /* Pad message to 2 cache lines */
}

scc_message;

Figure 4.3: Message format for intercore MINIX messages on the SCC

Second, the correct destination endpoint must be known. Since we save the original local endpoint
of remote stubs in the process table, we can fill in that value as the destination endpoint. However,
as described in Section the default MINIX message format does not include a destination
endpoint as it is already given as a parameter for the IPC primitives. As shown in Figure [4.3]
we created a new intercore message format which includes a destination field. Additionally, the
intercore message format contains a status field. The status field defines the type of message,
which can be any of the following:

SCC_MSGSTAT _SEND Message was created by a blocking send() call.
SCC_MSGSTAT _ACK Acknowledgement for messages created by send() (explained later).
SCC_MSGSTAT _SENDA Asynchronous message from senda().

SCC_MSGSTAT _NOTIFY Notification message from notify().

49

4.4. KERNEL CHAPTER 4. IMPLEMENTATION

Figure[4:4) presents the high level overview of the SCC messaging implementation in MINIX. There
are three execution paths which invoke the SCC messaging code. First, the IPC primitives dis-
cussed in Section and [2.2.4] detect if the endpoint argument points to a remote stub. If that is
the case, the SCC messaging code takes over execution and otherwise the default local messaging
code continues. Second, when a core receives an IPI, the SCC messaging code is also invoked to
check for new messages and to (re)try sending messages to other cores. Finally, if polling mode is
enabled the SCC messaging code is called from either the idle process or when a kernel call is made.

The SCC messaging code is structured in routines with a well defined task. On the highest
level, the scc_process-msg() function is responsible for (re)trying sending messages to other cores
and to scan the local MPB for incoming messages from other cores. The scc_try_transfer() and
scc_mpb_scan() functions implement these purposes, respectively. Every process on the remote
send queue, as described in Section is invoked for the scc_try_transfer() function such that
all pending messages get a chance to eventually be delivered. When the scc.mpb_scan() routine
finds a new message in the MPB, it invokes scc_incoming-msg() which validates and processes the
message. It can then decide to deliver the message to a local process with scc_try_deliver().

Sending a message to a remote process requires several steps. Figure [L.5] illustrates the flow
of execution when invoking send() on a global endpoint. This begins as soon as the process calls
sends(). The kernel messaging code will detect that the destination endpoint is a remote process
and enters the SCC specific scc_send() routine. There the kernel constructs a scc_message and
attempts to write it to the destination CPU’s MPB with scc_write_mpb(). This operation could fail
if there is no room in the remote MPB. If the write failed because there was no room, the kernel
flags in the remote MPB that it wishes to receive an IPI back when room comes free and adds the
sender to the Remote Send Queue. When that happens the kernel will retry to send to complete
delivery. If the write succeeded, the kernel sends an IPI to the remote CPU such that it knows
there is a new message waiting. The sending process is then blocked until an acknowledgement
is received from the remote CPU. Note that this is required as the send() primitive must only
return when the receiver has either received the message or an error occured, as described in Sec-
tion When the remote process consumes the message with receive(), the remote kernel writes
back the acknowledgement. On reception in scc_incoming_msg(), the sending process is unblocked.

Receiving a message from a global endpoint consists of the steps shown in Figure [£.6] There
are two main execution paths when receiving a message. Either the sending process first tries
to deliver the message before the receiving process calls receive() or the receiving process is first.
In the first case, execution starts with scc_recv(). The kernel looks if there is a buffered message
which was received earlier before receive() was called. Since there is a buffered message, the ker-
nel next looks if the message has the type SCC_MSGSTAT _SEND, meaning it was generated by
send(). If that is true the kernel must send back an acknowledgement message now or try again
later when room comes free by setting the ”IPI back” flag in the remote MPB. If the message is
not generated by send(), it is delivered immediately. Consider the second case, where the receive()
is called first. The kernel then scans the MPB to see if there are more messages now, which can
happen if the IPI has not yet arrived while the sender did already write, or in polling mode. If
there are messages, the kernel tries to deliver them as described before and otherwise buffers it
for later. When there are no messages in the MPB, the kernel sends an IPI to any core which
requested it with an ”IPI back” flag.

a0

CHAPTER 4. IMPLEMENTATION 4.4. KERNEL

foreach(send queue)

foreach(new message)

Figure 4.4: High level overview of the SCC messaging implementation in MINIX.

51

4.4. KERNEL CHAPTER 4. IMPLEMENTATION

foreach(send queue)

foreach(new message)

‘ yes

Figure 4.5: Flow of execution when invoking send() on a global endpoint.

52

CHAPTER 4. IMPLEMENTATION 4.4. KERNEL

no

foreach(new message)
yes

Figure 4.6: Flow of execution when receiving from a global endpoint.

53

4.4. KERNEL CHAPTER 4. IMPLEMENTATION

4.4.3 Asynchronous IPC

In contrast to the send() primitive, sending asynchronous messages does not require acknowledge-
ments as the sender is never blocked. Figure illustrates the flow of execution when senda() is
called with global endpoints. For every global endpoint in the messaging table, the kernel calls
scc_senda(). There it constructs a scc_message with the type SCC_.MSGSTAT_SENDA and tries
to write it to the destination CPU’s MPB. If the write is successful, the kernel sends an IPI to
the destination CPU and updates the messaging table accordingly. On failure, the kernel sets the
”IPI back” flag in the destination MPB and retries later at the next IPI or polling.

Notifications to global endpoints follow a similar path as senda() with some small differences.
When creating the scc_message, the SCC_MSGSTAT_NOTIFY type is set instead. Additionally,
at the receiving side the scc_try_deliver() function updates the notify bitmap if the message cannot
be delivered immediately instead of keeping it buffered, to save memory.

Unfortunately, our implementation does not fully implement the sendnb() primitive for global
endpoints. The reason is that it is not possible for the sender to look if the receiving remote pro-
cess is ready to accept the message without blocking. As discussed in Section kernels cannot
read each other’s private memory, including process table entries. Therefore, the sendnb() would
require sending an inter-processor message to ask the remote side if it can immediatly consume
the message. However, this would require blocking the sending process until the reply is received,
which violates the non blocking constraint of sendnb(). For this reason our implementation returns
an error when sendnb() is called on a global endpoint. A better alternative for programs is to use
senda() instead.

4.4.4 FEvent Notifications

IPIs function as a way to notify other CPUs when a special event occurs. In our implementation,
IPIs are send for two types of events:

New Message(s) As soon as a message is written to the MPB of another core, the sending core
triggers an IPI at the receiving core. This invokes the scc_process_msg() function at the
receiving core, which will in turn call scc_scan_mpb() to read new incoming messages in the
MPB.

MPB Space Available Sometimes it can happen the MPB of a core becomes full. In that case,
new messages cannot be written to the MPB and the implementation must retry sending
again later. To know when the kernel can retry sending more messages, it sets an ”IPI
back” flag in the MPB of the remote core. If the MPB at the remote core becomes empty,
it will send an IPI to all cores which have set such flag so that they can retry sending more
messages.

Additionally, our implementation supports polling mode. The kernel will invoke scc_process_msg|()
every time a kernel trap is done and when idle process runs. It is necessary to let the kernel busy
loop on the scc_process_msg() function, as it may happen messages are written to the MPB while
the system is completely idle.

4.4.5 MPB schemes

Our implemention supports the Split Shared and Lock Shared MPB schemes, as discussed in
Section [3:5.1] and [3:5.2] respectively. The implementation does not significantly differ from the
design, with one exception. Since the MPBs also need to store the "IPI back” flag, the first cache
line is reserved in the Lock Shared scheme for storing the "IPI back” bitmap. Every core in the
SCC has its own bit in every MPB. If the bit is 1, the implementation assumes it must send an
IPI when the MPB becomes empty. The bit is cleared when sending IPIs back. For the Split

o4

CHAPTER 4. IMPLEMENTATION 4.4. KERNEL

foreach(send queue)

Figure 4.7: Flow of execution when sending asynchroneous messages to a global endpoint.

55

4.4. KERNEL CHAPTER 4. IMPLEMENTATION

Shared MPB scheme, we did not need to reserve a cache line, as from the design we can determine
which slots have become full. For example, if CPU 1 is flooding messages to CPU 0, the MPB
slot of CPU 1 at CPU 0 quickly becomes full. Once all messages from the slot are consumed, the
implementation sends back an IPI only to CPU 1.

4.4.6 New Kernel Calls

To give processes access to SCC specific properties, we introduced the sys_scc_ctl() kernel call. Tt
should only be called by server processes, and has the following interface:

int sys_scc_ctl(int command, int param, int param2, int param3)

This function enables processes to use SCC specific functions. The first parameter is the com-
mand, followed by a list of parameters. Depending on the command, the parameters should be
set accordingly. The following commands are supported:

SCC_CTL_MYTILEID
Returns local tile ID. No arguments.

SCC_CTL.MYCOREID
Returns local core ID. No arguments.

SCC_CTL_ISONLINE
Checks if the given core ID is online. Returns 1 if online and 0 otherwise.

SCC_CTL_NEWSTUB
Used by DS to install a remote stub for the given core ID and endpoint pair. Returns the endpoint
of the stub on success and an error code otherwise.

SCC_.CTLMYREMOTENDPT

Used by DS to set the Published Remote Endpoints field for the local process during publishing.
DS calls this command for every acknowledgement message from other DS instances. Return OK
on success and an error code otherwise.

SCC_CTL_RESETPERF
Used internally by our implementation to reset performance counters.

In addition we extended the sys_getkinfo() kernel call with the following two commands. GET_NEXTPROC,
returns the next free PID in the process table. Used by PM to find an empty slot in the kernel

process table which does not collide with remote stubs. GET_SCCSTATS, used internally by our
implementation to retrieve the values of performance counters.

o6

Chapter

Evaluation

This chapter evaluates the performance of our implemention. First in Section[5.1] we describe the
setup we used to perform the benchmarks, including the Ipctest load generator program. From
Section [5.2] and one, we look at different load scenarios using various IPC primitives.

5.1 Setup

To benchmark our implementation we created the Ipctest server program. It is a configurable
server process and sends and receives IPC messages as fast as possible. As shown in Figure [5.1
we implemented three different load scenarios which we believe come the closest to real workload.
First, the one-to-one scenario in Figure runs with two Ipctest instances. The first instance
sends a certain number of messages to the other instance. The scenario finishes when all messages
have been received by the other instance. Second, the one-to-many scenario in Figure [5.1b| runs
with three or more Ipctest instances. One instance sends a predefined number of messages to all
other instances. Each other instance always receives the same amount and the scenario terminates
when all messages have arrived at their destination. Finally, the many-to-one scenario in Figure
also runs with three or more instances, but here the other instances send a predefined number
of messages to one particular instance. Many-to-one terminates when this instance received all
messages from all other instances.

To gain insight in the performance of the SCC messaging code, we need to compare it against
existing mechanisms. The performance benchmark results should give answers to the following
questions:

IPI versus Polling Mode An influential variable in the performance of the SCC messaging code
is IPI delivery. Interesting is to compare the performance of IPI event notification against
polling mode. Our expectation is that polling mode will be faster for at least point to point
delivery, since the code checks more often for new events.

Split versus Lock Shared MPB Another interesting question which MPB scheme performs
the best for sending and receiving messages in the SCC. Both schemes have potential for
high performance. The performance results should also answer the question whether the
locking in the Lock Shared scheme becomes a bottleneck with an increasing number of
cores.

Synchronous versus Asynchronous As discussed earlier in Section [4.4.2] our implemention
needs to send acknowledgement messages back when doing a send(). For asynchronous
messages this is not required. Therefore, we expect that asynchronous messaging is rougly
two times as fast as synchronous messaging.

o7

5.2. ONE-TO-ONE CHAPTER 5. EVALUATION

Local versus Remote IPC Relevant for the implementation is also the cost of remote messages
compared to local messages. We expect that there will be some overhead on the SCC, but
it should not be substantial. For local we started all Ipctest instances on the same CPU.

SCC versus SMP To learn more about the quality of our implementation, we compared the
ratio of local versus remote IPC on both the SCC and a SMP system. This should answer
the question whether the overhead of remote messaging in our implementation is reasonable.
We used an 8-core 2.26Ghz Intel Xeon to compare with the SCC.

L]]]

|
L] []

(a) One to one (b) One to many (c) Many to one

Figure 5.1: IPC messaging scenarios implemented in ipctest.

5.2 Omne-to-One

The one-to-one scenario runs with two instances. The first instance sends a certain number of
messages to the second instances. For the SCC we ran the one-to-one test with 10000 messages.
Figure shows the results of one-to-one send() on the SCC. The results show that polling mode
is almost twice as fast as IPI mode. The explanation is that IPIs take certain time to be delivered
at the destination. Additionally, the results show that the cost of remote send() is between 2 to
3 times slower than local send(). Another interesting observation is that when IPIs are combined
with polling, the result is slower than both enabled alone. The reason is that when enabling both,
the code also suffers from the overhead of both. Finally, there is a difference between the perfor-
mance of Split and Lock Shared MPB schemes. Unfortunately, we do not have a clear explanation
for this behaviour.

We ran the same scenario on the 8-core Intel Xeon, as shown in Figure Since the Intel
Xeon is a much more advanced processes as the older P54C, we could send much more messages
in approximately the same amount of time. The first Ipctest instance sends 10 million messages
to the second Ipctest instance. The remote messaging is about 2 times as slow compared to local
message delivery on the SMP, which matches closely with our local versus remote ratio on the SCC.

Finally, we ran a similar test on the SCC with asynchronous message delivery. Unfortunately,
this test does not show data on local message delivery, as the senda() implementation for local
delivery is unreasonably slow and makes no sense to compare against. The reason for this is that
the senda() code for local delivery is not optimized for the extreme high load we test against.
Figure shows the performance results of remote asynchronous message delivery with senda()
on the SCC. First, polling with Lock Shared MPB is the fastest, but the others are not far behind.
Second, we can conclude from these results that senda() is indeed twice as fast as send(), due to
the extra IPI needed for send().

a8

CHAPTER 5. EVALUATION 5.2. ONE-TO-ONE

35 -

30 -

25

20

Seconds

Figure 5.2: One-to-One send() 10000 messages on the SCC.

25

20
15 |
10 |
5L
0

Local Remote

Seconds

Figure 5.3: One-to-One send() 10 million messages on the Intel Xeon.

59

5.3. ONE-TO-MANY CHAPTER 5. EVALUATION

Seconds

Figure 5.4: One-to-One senda() 10000 messages on the SCC.

5.3 One-to-Many

The next scenario we tested is one-to-many, which is useful to simulate broadcasting state updates.
One instance sends a predefined number of messages to all other instances, which is set to 1000
on the SCC. Figure shows the performance results of one-to-many send() on the SCC. The
first observation is that the fastest remote mechanism, IPIs enabled with Lock Shared MPBs, is
about 2x slower than local message delivery. This matches with earlier results in the one-to-one
send() test. Second, polling mode is slightly slower than IPT mode. The reason for this behaviour
is the higher load on the mesh network. Finally, we see that when polling mode is enabled, local
message delivery also suffers from its overhead. This is because our implementation polls the MPB
on every kernel call.

Figure displays the same test scenario for the Intel Xeon. One instance sends 1 million
messages to each other instance. We can see that the cost of local message delivery increases
slighty with the number of extra instances, but remote messaging comes with far more overhead.
With only two destination instances, the remote messaging overhead is 2 times the cost of a local
message. Later with 7 destination instances the cost is 3 times. The most obvious explanation
for this behaviour is due to the design of SMP. The increased load on the shared bus between the
CPUs slowly becomes a bottleneck.

Finally, we evaluated the performance of senda() in the one-to-many scenario, as presented in
Figure The results in this case are very close. Both IPI and polling mode show the same
performance with 32 or more cores. The reason is that the sending core simply cannot write
messages faster at that point. It does not need to wait for acknowledgements in this test, thus
the performance is limited by the speed at which the receivers can consume the messages from
the sender. Of course, the receivers together are faster than the sender alone, explaining why IPI
and polling mode both receive the same performance in this case. An unexplained oddity in the
results is there is a sudden drop in the graph for IPI mode with Split Shared MPB. We do not
have a clear explanation for this behaviour.

60

CHAPTER 5. EVALUATION 5.3. ONE-TO-MANY
100
IPI + Split —+—
IPI + Lock ---x---
90 | Polling + Split ---:---
Polling + Lock &
Local - -m-
80 Local + Polling ---o-
70
60
g
g 50
&
40
30
20
10
Oii’_
2 48
Instances
Figure 5.5: One-to-Many send() with 1000 messages on the SCC.
30 Local
Remmote - A
25 | e
/’X, ;
20 + L
/x’/
s 151 -
3 X

Instances

Figure 5.6: One-to-Many send() with 1 million messages on the Intel Xeon.

61

5.4. MANY-TO-ONE CHAPTER 5. EVALUATION

40
IPI + Split —+—
IPl + Lock ---X--- g
Polling + Split ------ X
35 Polling + Lock & L

Seconds

2 4 8 16 32 48
Instances

Figure 5.7: One-to-Many senda() with 1000 messages on the SCC.

5.4 Many-to-One

The last test scenario we evaluated is many-to-one. Here two or more instances a predefined num-
ber send messages to a particular other instance. Figure displays the performance results when
sending 1000 synchronous messages on the SCC. Interesting in these results is that remote mes-
saging is only 1.5 times the cost of local messaging. A possible explanation is that in contrast to
the one-to-many scenario, the receiver wastes less time waiting for acknowledgements and spends
more time processing messages. Additionally, when polling mode is enabled, local messages is the
slowest of all. Finally, we can see from the results that the choice between IPI and polling mode
does not make a significant difference in this case, nor is Split Shared or Lock Shared MPB. This
can also be explained by the fact the receiver spends more time doing useful work and less time
waiting for IPIs or polls.

Figure shows the results of many-to-one send() on the Intel Xeon. Here we see again that
remote messaging is 2 times the cost of local messaging. However, in contrast to the one-to-many
scenario, performance does not slowly drop to 3 times the cost. These results are similar to the
results of the SCC implementation. Finally, Figure displays the results of many-to-one senda().
Unlike one-to-many, polling mode performance is very bad in this case. With 8 cores or more,
polling mode becomes too slow to be practical. The most obvious reason is that polling puts a
too high load on the mesh, since all cores are flooding mesh with polling requests on all other
MPBs. However, it is unclear why in this case performance is much worse than the one-to-many
test. Finally, the results show that Lock Shared is slightly faster than Split Shared.

62

CHAPTER 5. EVALUATION 54. MANY-TO-ONE

IPI + Split —+—

IPI + Lock ---x---

Polling + Split ------
60 - Polling + Lock &

Local - -=-

Local + Polling ---o-

12}
kel
c
Q
(5]
[0
(2]
Instances
Figure 5.8: Many-to-One send() with 1000 messages on the SCC.
IPI + Split —— ;
70 | IPl + Lock ---x--- ;
Polling + Split ---%--- P X
Polling + Lock & e
60
50
0
S 40|
Q
[$]
]
(2]

Instances

Figure 5.9: Many-to-One senda() with 1000 messages on the SCC.

63

5.4. MANY-TO-ONE CHAPTER 5. EVALUATION

25
Local —+—
Remote ---x---
X
20
f)(/
15 | *

Seconds

Instances

Figure 5.10: Many-to-One send() with 1 million messages on the Intel Xeon.

64

Chapter

Future Work

Our implementation provides a solid basis for future development and research on the SCC plat-
form with MINIX. There are many things which could be improved or added. First, the imple-
mentation currently only supports publishing endpoints to all CPUs. With small changes to DS
and libsys, it could be extended to support publishing to subsets of CPUs. This is useful when a
process does not need to be visible on all cores. Additionally, unpublishing is needed to cleanup
terminating processes.

While the MINIX instances on the SCC are currently able to run and communicate, they are
still more or less separate instances. We envision future work includes transforming MINIX into
a true manycore operating system where the MINIX instances together form a single entity. This
requires choosing which server processes should run on which cores in the SCC, and how many
instances. For example, there could be an PM instance on every core, but PM would then need to
synchronize when performing updates to PM’s internal process table. This is especially relevant
when creating new processes, as it should not be possible for PM instances to choose the same
PID when forking at the same time. Another way is to have a single PM instance in the SCC,
which manages all processes system wide. A potential problem with this design is that the single
PM instance could become a performance bottleneck under high system load. The same choice
applies to other servers, such as VM, RS and VFS. In the case of VM it would be difficult to
have a single instance, as VM currently assumes it can manage and modify all memory directly,
including page tables, which is a problem for the cache incoherent SCC. RS should be able to run
as a single instance, as it can send keep alive messages to global endpoints of servers. However,
care must be taken that RS also receives signal messages when a remote process crashes.

Another interesting addition would be support for migrating processes between cores. Migra-
tion is useful to balance the load in the SCC. When migrating a process, all cores which have
a stub installed should receive a message to update the appropriate fields, such as the coreid.
Additionally, migration requires copying large chunks of memory, which may not be trivial on the
SCC [54]. One way to implement bulk memory copy is to use uncached shared memory, but this
will probably be slow. Additionally, in case every core has an instance of VM, the VM server must
update memory mapping information when a process is migrated.

Another challenge for future work is to parallelize the server processes in MINIX. Currently the
server processes work together in a sequential fashion. When handling service requests from ap-
plications, the server processes are often blocked waiting on each other. This should be avoided in
manycore systems to achieve the best performance. Possible ways to parallelize the servers is to
use asynchronous messaging instead or implement multiple threads in each server which can use
blocking IPC. Finally, it would be good to have a better system console in MINIX on the SCC,
for example a graphical frame buffer console similar to the Linux implementation.

65

Chapter

Related Work

Other research groups are currently doing similar work on the SCC. First, the Barrelfish [55]
operating system implements support for the SCC. In our work we successfully applied their mul-
tikernel design principles to MINIX. In general the Barrelfish project is mostly about exploring
the possibilities of multikernel designs where MINIX is more concerned with the benefits of micro-
kernels, especially fault tolerance. Second, Intel provides Linux as the default operating system
for the SCC. Since Linux is a monolithic operating system, it is only partly relevant for our work.
When implementing the new boot code for MINIX, the Linux SCC source code was useful to ex-
tend our knowledge of the SCC where the documentation proved unsatisfying. Finally, researchers
from the Aachen University in Germany are working on MetalSVM [56], a fast inter-kernel com-
munication and synchronization layer. MetalSVM implements a hypervisor on the SCC mainly
for experiments with distributed shared memory. On a later stage, MetalSVM could become more
relevant for our work with MINIX.

Similar work on many core operating systems include Corey [57], which argues that applica-
tions should control sharing data in the OS. In Corey applications can control sharing of three
abstractions: address ranges, kernel cores and shares. The LavA [58] project is concerned with
many core embedded operating systems and argue that when sufficient chip space is available, a
CPU can be dedicated to a single task. This avoids the need of scheduling, context switching
and memory protection completely. Additionally, it is easier to meet realtime constraints if only
a single task is executed per CPU. Moreover, a waiting CPU can be stopped completely until the
arrival of an external interrupt. The factored operating system (FOS) [59] attempts to achieve
high scalability with message passing and groups of server processes, inspired by the distributed
design of internet services. Each group of server processes implements a system service, for ex-
ample the file system or process manager. The server groups work closely together to balance
the load. Furtermore, FOS provides a single system image to applications and supports the same
elasticity of cloud computing platforms. Finally, the Tessellation OS [60] argues for space-time
partitioning (STP). STP divides resources such as cores, cache, and network bandwidth amongst
interacting software components. The components can use the resources in an application specific
fashion and interact with each other by message passing.

66

—

Chapter

Conclusion

In this work we implemented MINIX on the SCC. While we needed to introduce several major
changes to MINIX, the overall design of MINIX persisted. Our work shows that microkernels can
function in cache incoherent environments and potentially scale to a large number of cores. The
SCC has been a helpful platform for experiments. Although it does not provide solid debugging
functionality for operating system developers, which made booting MINIX a time costly process,
the SCC shows much potential for providing a scalable hardware platform. The small size of
the MPB is not a problem for MINIX, nor is its cache incoherent nature. We were able to
evaluate different message passing mechanisms, each showing different behaviour under various
workloads. Additionall, we learned that our messaging implementation on the SCC performs
excellent compared to local only messaging and MINIX SMP. With the performance results we
conclude that IPIs are fast enough compared to polling mode and in some cases even faster.
Overall, Lock Sharing the MPB showed the best performance compared to a Split Shared MPB
design. Although more research is needed to transform MINIX in a mature manycore operating
system, we provided a solid basis for further experimentation on the SCC. As Intel and other
manufactures continue to improve parallelism in microprocessors, we software designers continue
to improve scaling the software, which should eventually evolve manycore computer systems in
reliable, high quality products.

67

[1]

Bibliography

James E. Thornton. Considerations in Computer Design Leading up to the Control Data
6600. Technical report, Control Data Corporation, 1964.

Gordon E. Moore. Cramming more components onto integrated circuits. Electronics, 38(8),
April 19 1965.

Shekhar Y. Borkar, Hans Mulder, Pradeep Dubey, Stephen S. Pawlowski, Kevin C. Kahn,
Justin R. Rattner, David J. Kuck, R. M. Ramanathan, and Vince Thomas. Platform 2015:
Intel Processor and Platform Evolution for the Next Decade. Technical report, Intel Corpo-
ration, http://www.intel.com/go/platform2015, 2005.

Philip Machanick. Approaches to Addressing the Memory Wall. Technical report, School of
IT and Electrical Engineering, Brisbane, QLD 4072, Australia, 2002.

Sally A. McKee. CF’04. In Reflections on the Memory Wall, Ischia, Italy, April 14-16 2004.
ACM.

P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way Multithreaded SPARC
Processor. Micro, IEEE, 25(2), March-April 2005.

Intel Labs. SCC External Architecture Specification (EAS) Revision 0.94. Technical report,
Intel Corporation, May 2010.

Andi Kleen. Linux Multi-core Scalability. In Linux Kongress. Intel Corporation, Germany,
2009.

Andrew S. Tanenbaum and Albert S. Woodhull. Operating Systems Design and Implementa-
tion. Prentice Hall, Amsterdam, Netherlands, 3rd edition, 2006.

Nicolas Palix, Gaél Thomas, Suman Saha, Christophe Calves, Julia Lawall, and Gilles Muller.
Faults in linux: ten years later. In Proceedings of the sixteenth international conference on

Architectural support for programming languages and operating systems, ASPLOS 11, pages
305-318, New York, NY, USA, 2011. ACM.

Cristiano Giuffrida, Lorenzo Cavallaro, and Andrew S. Tanenbaum. We Crashed, Now What?
In Proceedings of the 6th International Workshop on Hot Topics in System Dependability,
2010.

Jeff Arnold and M. Frans Kaashoek. Ksplice: Automatic Rebootless Kernel Updates. In
Proceedings of the FEuroSys Conference, April 2009.

Jochen Liedtke. Towards Real u-Kernels, 1996.

MIPS Technologies Incorporated. MIPS32 1074K Processor Core Family. Technical report,
955 East Arques Avenue, Sunnyvale, CA 94085, United States, 2011.

68

 http://www.intel.com/go/platform2015

BIBLIOGRAPHY BIBLIOGRAPHY

[15]

[26]

[27]

[28]

[29]

[30]

[31]

Andrew Tanenbaum, Raja Appuswamy, Herbert Bos, Lorenzo Cavallaro, Cristiano Giuffrida,
Tomas Hruby, Jorrit Herder, Erik van der Kouwe, and David van Moolenbroek. MINIX 3:
Status Report and Current Research. ;login: The USENIX Magazine, 35(3), June 2010.

Jorrit N. Herder. Building A Dependable Operating System: Fault Tolerance In MINIX 3. De
Nederlandse Organisatie voor Wetenschappelijk Onderzoek, Amsterdam, Netherlands, 2010.

The Open Group. IEEE Std 1003.1: POSIX.1-2008. http://www.opengroup.org/
onlinepubs/9699919799/, December 2008.

Intel Corporation. Intel 64 and TA-32 Architectures Software Developer’s Manual Volume
3A: System Programming Guide, Part 1. Technical report, 2200 Mission College Blvd. Santa
Clara, CA 94054-1549, USA, February 2008. Section 3.6: Paging (Virtual Memory) Overview.

Intel Corporation. 82C54 CHMOS Programmable Interval Timer. Technical report, 2200
Mission College Blvd. Santa Clara, CA 94054-1549, USA, October 1994.

Bjorn P. Swift. Individual Programming Assignment User Mode Scheduling in MINIX 3.
Technical report, Vrije Universiteit Amsterdam, 2010.

Intel Corporation. 8259A Programmable Interrupt Controller (8259A 8259A-2). Technical
report, 2200 Mission College Blvd. Santa Clara, CA 94054-1549, USA, December 1988.

Niek Linnenbank. Journaling Support in MINIX 3. Technical report, Vrije Universiteit
Amsterdam, February 2011.

PCI-SIG. PCI Local Bus Specification Revision 3.0. Technical report, 5440 SW Westgate
Drive, Suite 217, Portland, Oregon 97221, February 2004.

Information Sciences Institute, University of Southern California, 4676 Admiralty Way, Ma-
rina del Rey, California 90291. Transmission Control Protocol DARPA Internet Program
Protocol Specification. Technical report, Defense Advanced Research Projects Agency, In-
formation Processing Techniques Office, 1400 Wilson Boulevard, Arlington, Virginia 22209,
September 1981.

The ethernet: a local area network: data link layer and physical layer specifications. SIG-
COMM Comput. Commun. Rev., 11:20-66, July 1981.

OpenSSH Community. OpenSSH Project Home Page. http://www.openssh.org, August
2011.

Niek Linnenbank. Implementing the Intel Pro/1000 on MINIX 3. Technical report, Vrije
Universiteit Amsterdam, December 2009.

Colin Fowler. The Minix3 Tigon III (TG3) Driver. Technical report, Vrije Universiteit
Amsterdam, May 2010.

Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
3A: System Programming Guide, Part 1. Technical report, 2200 Mission College Blvd. Santa
Clara, CA 94054-1549, USA, February 2008. Chapter 8: Processor Management and Initial-
ization.

Intel Corporation. Intel 64 and TA-32 Architectures Software Developer’s Manual Volume
3A: System Programming Guide, Part 1. Technical report, 2200 Mission College Blvd. Santa
Clara, CA 94054-1549, USA, February 2008. Chapter 9: Advanced Programmable Interrupt
Controller (APIC).

Intel Corporation. 82093AA I/O Advanced Programmable Interrupt Controller (IOAPIC).
Technical report, 2200 Mission College Blvd. Santa Clara, CA 94054-1549, USA, May 1996.

69

http://www.opengroup.org/onlinepubs/9699919799/
http://www.opengroup.org/onlinepubs/9699919799/
http://www.openssh.org

BIBLIOGRAPHY BIBLIOGRAPHY

[32]

[33]

[34]

[35]

[38]

[39]

[40]

[43]

Jim Held. Single-chip Cloud Computer: An experimental many-core processor from Intel
Labs. In Single-chip Cloud Computer Symposium, page 3. Intel Labs, February 10 2010.

Alexander Arlt, Jan H. Schonherr, and Jan Richling. Meta-programming Many-Core Sys-
tems. In 3rd MARC Symposium, Fraunhofer IOSB, Ettlingen, Germany. Communication and
Operating Systems Group, Technische Universiteit Berlin, Germany, July 5-6 2011.

Andreas Prell and Thomas Rauber. Task Parallelism on the SCC. In 3rd MARC Sympo-
sium, Fraunhofer IOSB, FEttlingen, Germany. Department of Computer Science, University
of Bayreuth, Germany, July 5-6 2011.

Nils Petersen, Julian Pastarmov, and Didier Stricker. ARGOS - a software framework to
facilitate user transparent multi-threading. In 8rd MARC Symposium, Fraunhofer I0SB,
Ettlingen, Germany. DFKI GmbH and Google Germany, July 5-6 2011.

Wasuwee Sodsong and Bernd Burgstaller. A Fast Fourier Transformation Algorithm for
Single-Chip Cloud Computers Using RCCE. In 3rd MARC Symposium, Fraunhofer 10SB,
Ettlingen, Germany. Department of Computer Science, Yonsei University, Seoul, Korea, July
5-6 2011.

Merijn Verstraaten, Clemens Grelck, Michiel W. van Tol, Roy Bakker, and Chris R. Jesshope.
On Mapping Distributed S-NET to the 48-core Intel SCC Processor. In 3rd MARC Sympo-
sium, Fraunhofer IOSB, Ettlingen, Germany. Informatics Institute, University of Amsterdam,
Science Park 904, 1098 XH Amsterdam, The Netherlands, July 5-6 2011.

Steffen Christgau, Bettina Schnor, and Simon Kiertscher. The Benefit of Topology-Awareness
of MPI Applications on the SCC. In 3rd MARC Symposium, Fraunhofer IOSB, FEttlingen,
Germany. Institute of Computer Science, University of Potsdam, August-Bebel-Strasse 89,
14482 Potsdam, Germany. Potsdam Institute for Climate Impact Research, P.O. Box 60 12
03, 14412 Potsdam, Germany, July 5-6 2011.

Simon Peter, Adrian Schpbach, Dominik Menzi, and Timothy Roscoe. Early experience
with the Barrelfish OS and the Single-Chip Cloud Computer. In 3rd MARC Symposium,
Fraunhofer I0SB, Fttlingen, Germany. Systems Group, Department of Computer Science,
ETH Zurich, July 5-6 2011.

Jan-Arne Sobania, Peter Troger, and Andreas Polze. Linux Operating System Support for
the SCC Platform - An Analysis. In 8rd MARC Symposium, Fraunhofer IOSB, FEttlingen,
Germany. Hasso Plattner Institute, University of Potsdam, Prof.-Dr.-Helmert-Str. 2-3, 14482
Potsdam, Germany, July 5-6 2011.

Panayiotis Petrides, Andreas Diavastos, and Pedro Trancoso. Exploring Database Workloads
on Future Clustered Many-Core Architectures. In 8rd MARC Symposium, Fraunhofer I0SB,
Ettlingen, Germany. Department of Computer Science, University of Cyprus, July 5-6 2011.

Stephan-Alexander Posselt Bjorn Saballus and Thomas Fuhrmann. A Scalable and Robust
Runtime Environment for SCC Clusters. In 3rd MARC Symposium, Fraunhofer 10SB, Et-
tlingen, Germany. Technische Universitat Munchen, Boltzmannstrasse 3, 85748 Garching/-
Munich, Germany, July 5-6 2011.

Anastasios Papagiannis and Dimitrios S. Nikolopoulos. Scalable Runtime Support for Data-
Intensive Applications on the Single-Chip Cloud Computer. In 8rd MARC Symposium, Fraun-
hofer I0SB, Ettlingen, Germany. Institute of Computer Science (ICS), Foundation for Re-
search and Technology Hellas (FORTH), GR70013, Heraklion, Crete, GREECE, July 5-6
2011.

70

BIBLIOGRAPHY BIBLIOGRAPHY

[44]

[52]

[53]

[54]

Florian Thoma, Michael Hubner, Diana Gohringer, Hasan Umitcan Yilmaz, and Jurgen
Becker. Power and performance optimization through MPI supported dynamic voltage and
frequency scaling. In 3rd MARC Symposium, Fraunhofer I0SB, FEttlingen, Germany. Karl-
sruhe Institute of Technology (KIT), Germany. Fraunhofer IOSB, Ettlingen, Germany, July
5-6 2011.

Pedro Alonso, Manuel F. Dolz, Francisco D. Igual, Bryan Marker, Rafael Mayo, Enrique S.
Quintana-Ort, and Robert A. van de Geijn. Power-aware Dense Linear Algebra Implementa-
tions on Multi-core and Many-core Processors. In 8rd MARC Symposium, Fraunhofer I0SB,
Ettlingen, Germany. Univ. Politecnica de Valencia, 46.022 - Valencia, Spain. Univ. Jaume I
de Castellon, 12.071 - Castellon, Spain. The University of Texas at Austin, TX 78712, July
5-6 2011.

Intel Corporation. Terascale Computing Research Program. http://techresearch.intel.
com/ResearchAreaDetails.aspx?1d=27, August 2011.

Intel Corporation. Manycore Applications Research Community. http://techresearch.
intel.com/ProjectDetails.aspx?Id=1, August 2011.

Intel Corporation. Pentium Processor Family Developers Manual Volume 3: Architecture
and Programming Manual. Technical report, 2200 Mission College Blvd. Santa Clara, CA
94054-1549, USA, 1995.

Intel Labs. The L2 Cache on the SCC. Technical report, 2200 Mission College Blvd. Santa
Clara, CA 94054-1549, USA, November 2010.

Intel Labs. SCC External Architecture Specification (EAS) Revision 0.94. Technical report,
Intel Corporation, May 2010. Section 4.2.6 MIU (Mesh Interface Unit).

Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca Isaacs, Simon
Peter, Timothy Roscoe, Adrian Schupbach, and Akhilesh Singhania. The Multikernel: A
new OS architecture for scalable multicore systems. In Proceedings of the ACM SIGOPS
22nd Symposium on Operating Systems Principles. Systems Group, ETH Zurich. Microsoft
Research, Cambridge. ENS Cachan Bretagne, ACM, October 11-14 2009.

Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume
3A: System Programming Guide, Part 1. Technical report, 2200 Mission College Blvd. Santa
Clara, CA 94054-1549, USA, February 2008. 3.2 Using Segments.

Intel Corporation. Intel 64 and ITA-32 Architectures Software Developer’s Manual Volume
3A: System Programming Guide, Part 1. Technical report, 2200 Mission College Blvd. Santa
Clara, CA 94054-1549, USA, February 2008. 2.2 Modes of Operation.

Michiel W. van Tol, Roy Bakker, Merijn Verstraaten, Clemens Grelck, and Chris R. Jesshope.
Efficient Memory Copy Operations on the 48-core Intel SCC Processor. In 3rd MARC Sympo-
sium, Fraunhofer IOSB, Ettlingen, Germany. Informatics Institute, University of Amsterdam,
Sciencepark 904, 1098 XH Amsterdam, The Netherlands, July 5-6 2011.

Systems Group, ETH Zurich. Barrelfish Operating System Homepage. http://wuw.
barrelfish.org, February 2009.

Pablo Reble, Stefan Lankes, Carsten Clauss, and Thomas Bemmerl. A Fast Inter-Kernel
Communication and Synchronization Layer for MetalSVM. In 3rd MARC Symposium, Fraun-
hofer I0SB, Ettlingen, Germany. Chair for Operating Systems, RWTH Aachen University,
Kopernikusstr. 16, 52056 Aachen, Germany, July 5-6 2011.

71

http://techresearch.intel.com/ResearchAreaDetails.aspx?Id=27
http://techresearch.intel.com/ResearchAreaDetails.aspx?Id=27
http://techresearch.intel.com/ProjectDetails.aspx?Id=1
http://techresearch.intel.com/ProjectDetails.aspx?Id=1
http://www.barrelfish.org
http://www.barrelfish.org

BIBLIOGRAPHY BIBLIOGRAPHY

[57] Silas B. Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans Kaashoek, Robert Morris,
Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang, and Zheng Zhang. Corey:
An Operating System for Many Cores. In Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation (OSDI ’08), San Diego, California, December
2008.

[58] Michael Engel, Matthias Meier, and Olaf Spinczyk. LavA: An Embedded Operating System
for the Manycore Age. Technical report, Embedded System Software, Technische Universitat
Dortmund, 2009.

[59] A Unified Operating System for Clouds and Manycore: fos. Technical report, David Wentzlaff
and Charles Gruenwald III and Nathan Beckmann and Kevin Modzelewski and Adam Belay
and Lamia Youseff and Jason Miller and Anant Agarwal, 25-27 January 2010.

[60] Tessellation: Space-Time Partitioning in a Manycore Client OS. Technical report, 2010.

72

Appendix

Default LUTs

LUT # Physical Address Description
255 FFFFFFFF - FF000000 Private
254 FEFFFFFF - FE000000 N/A
253 FDFFFFFF - FD000000 N/A
252 FCFFFFFF - FC000000 N/A
251 FBFFFFFF - FB000000 VRC
250 FAFFFFFF - FA000000 | Management Console TCP/IP Interface
249 FOFFFFFF - F9000000 N/A
248 FS8FFFFFF - F8000000 N/A
247 F7FFFFFF - F7000000 | System Configuration Registers Tile 23
246 F6FFFFFF - F6000000 | System Configuration Registers Tile 22
245 F5FFFFFF - F5000000 | System Configuration Registers Tile 21
244 FAFFFFFF - F4000000 | System Configuration Registers Tile 20
243 F3FFFFFF - F3000000 | System Configuration Registers Tile 19
242 F2FFFFFF - F2000000 | System Configuration Registers Tile 18
241 F1FFFFFF - F1000000 | System Configuration Registers Tile 17
240 FOFFFFFF - FO000000 | System Configuration Registers Tile 16
239 EFFFFFFF - EF000000 | System Configuration Registers Tile 15
238 EEFFFFFF - EE000000 | System Configuration Registers Tile 14
237 EDFFFFFF - ED0O00000 | System Configuration Registers Tile 13
236 ECFFFFFF - EC000000 | System Configuration Registers Tile 12
235 EBFFFFFF - EBO00000 | System Configuration Registers Tile 11
234 EAFFFFFF - EA000000 | System Configuration Registers Tile 10
233 E9FFFFFF - E9000000 System Configuration Registers Tile 9
232 ESFFFFFF - ES8000000 System Configuration Registers Tile 8
231 ETFFFFFF - ET000000 System Configuration Registers Tile 7
230 E6FFFFFFE - E6000000 System Configuration Registers Tile 6
229 E5SFFFFFF - E5000000 System Configuration Registers Tile 5
228 E4FFFFFF - E4000000 System Configuration Registers Tile 4
227 E3FFFFFF - E3000000 System Configuration Registers Tile 3
226 E2FFFFFF - E2000000 System Configuration Registers Tile 2
225 E1FFFFFF - E1000000 System Configuration Registers Tile 1
224 EOFFFFFF - E0000000 System Configuration Registers Tile 0
223 DFFFFFFF - DF000000 N/A

73

APPENDIX A. DEFAULT LUTS

LUT # Physical Address Description

216 DSFFFFFF - D8000000 N/A

215 D7FFFFFF - D7000000 | MPB in Tile 23
214 D6FFFFFF - D6000000 | MPB in Tile 22
213 D5FFFFFF - D5000000 | MPB in Tile 21
212 D4FFFFFF - D4000000 | MPB in Tile 20
211 D3FFFFFF - D3000000 | MPB in Tile 19
210 D2FFFFFF - D2000000 | MPB in Tile 18
209 DI1FFFFFF - D1000000 | MPB in Tile 17
208 DOFFFFFF - D0000000 | MPB in Tile 16
207 CFFFFFFF - CF000000 | MPB in Tile 15
206 CEFFFFFF - CE000000 | MPB in Tile 14
205 CDFFFFFF - CD000000 | MPB in Tile 13

204 CCFFFFFF - CC000000 | MPB in Tile 12
203 CBFFFFFF - CB000000 | MPB in Tile 11
202 CAFFFFFF - CA000000 | MPB in Tile 10
201 CYFFFFFF - C9000000 | MPB in Tile 9
200 C8FFFFFF - C8000000 | MPB in Tile 8
199 C7FFFFFF - C7000000 | MPB in Tile 7
198 C6FFFFFF - C6000000 | MPB in Tile 6
197 C5FFFFFF - C5000000 | MPB in Tile 5
196 C4FFFFFF - C4000000 | MPB in Tile 4
195 C3FFFFFF - C3000000 | MPB in Tile 3
194 C2FFFFFF - C2000000 | MPB in Tile 2
193 CIFFFFFF - C1000000 | MPB in Tile 1
192 COFFFFFF - C0O000000 | MPB in Tile 0
191 BFFFFFFF - BF000000 N/A
132 84FFFFFF - 84000000 N/A
131 83FFFFFF - 83000000 Shared MCH3
130 82FFFFFF - 82000000 Shared MCH2
129 S1FFFFFF - 81000000 Shared MCH1
128 SOFFFFFF - 80000000 Shared MCHO
127 TFFFFFFF - 7F000000 N/A

42 2AFFFFFF - 2A000000 N/A

41 29FFFFFF - 29000000 N/A

40 28FFFFFF - 28000000 Private

39 27FFFFFF - 27000000 Private

1 O01FFFFFF - 01000000 Private

0 O0FFFFFF - 00000000 Private

74

0~ Utk WN -

Appendix

Kernel Process Table Structure

struct proc {
struct stackframe_s

p-reg; /*

struct fpu_state_s p_fpu_state;
struct segframe p_seg; /*

proc_nr_t p.nr;
struct priv *p_priv;
u32_t p-rts_flags;
u32_t p_misc_flags;

char p_priority;

V&
/*
/*
/*

V&

u64_t p_cpu-time_left; /*
unsigned p_quantum_size_ms; V&

struct proc *xp_scheduler; /*

unsigned p_cpu;
#ifdef CONFIG_SMP

/*

s

process’ registers saved in stack frame x/
/* process’ fpu_regs saved lazily =/

segment descriptors x/

number of this process (for fast access) x/

system privileges structure x/

process is runnable only if zero x/

flags that do not suspend the process */

current process priority x/

time left to wuse the cpu */

assigned time quantum in ms

FIXME remove this %/

who should get out of quantum msg */
what CPU is the process running on */

bitchunk_t p_cpu-mask [BITMAP_CHUNKS(CONFIGMAX CPUS)]; /+x what CPUs is hte

process allowed to
run on */

#endif

/* Accounting statistics that get passed to the process’ scheduler x/
struct {

u64_t enter_queue; /* time when enqueued (cycles) */

u64_t time_in_queue; /% time spent in queue x/

unsigned long dequeues;

unsigned long ipc.sync;

unsigned long ipc_async;

unsigned long preempted;
} p-accounting;
struct mem-map p_memmap [NR.LOCAL_SEGS]; /+* memory map (T, D, S) x/
clock_-t p_user_time; /* user time in ticks x/
clock_t p_sys_time; /% sys time in ticks x/
clock_t p_virt_left; /* number of ticks left on wirtual timer x/
clock_t p_prof_left; /+* number of ticks left on profile timer x/
u64_t p_cycles; /* how many cycles did the process use x/
struct proc xp_nextready; /% pointer to next ready process x/
struct proc xp_caller_q; /* head of list of procs wishing to send x/
struct proc *xp_q_link; /% link to mext proc wishing to send x/
endpoint_t p_getfrom_e; /* from whom does process want to receive? x/
endpoint_-t p-sendto-_e; /* to whom does process want to send? x/

sigset_t p_pending;

bit map for pending kernel signals */

(6]

APPENDIX B. KERNEL PROCESS TABLE STRUCTURE

* X X X ¥

*/

#define
#define
#define
#define

#endif
}s

char p_name[P.NAMELEN];
endpoint_t p_endpoint;

message p-sendmsg;

what needs to be dome and fized

The requestor gets a copy of its
VMREQUEST set .

int p_found;
int p_magic;

/*
/*
/*

name of

Message

it

struct {

struct proc
struct proc

*nextrestart; /%
*nextrequestor; /x

VMSTYPE_SYS_NONE 0
VMSTYPE KERNELCALL 1
VMSTYPE DELIVERMSG 2
VMSTYPEMAP 3
int type; /%
union {
/* VMSTYPE_SYS_.MESSAGE x/
message reqmsg; /*
} saved;

/% Parameters of request to VM x/

endpoint number,

Tequest message

the process, including \0 %/
generation—aware x/

from this process if SENDING x/

message p-delivermsg; /* Message for this process if MF_DELIVERMSG x/
vir_bytes p_delivermsg_vir; /% Virtual addr this proc wants message at */
/x If handler functions detect a process wants to do something with

memory that isn’t present, VM has to fix it. Until it has asked

save necessary state here.

in reqgmsg and gets

next in vmrestart chain x/
next in vmrequest chain x/

suspended operation x/

suspended rTequest message */

int req-type;
endpoint_t target;
union {
struct {
vir_bytes start , length; /+* memory range x/
u8_t writeflag; /* monzero for
} check; * write access x/
struct {
char writeflag;
endpoint_t ep-s;
vir_bytes vir_s , vir_d;
vir_bytes length;
} map;
} params;
/* VM result when available x/
int vmresult ;
/% If the suspended operation is a sys_call, its details are

* stored here.

*/

} p-vmrequest;

/%

#if DEBUG.TRACE
int p_schedules;

76

consistency checking variables x/
/* check walidity of proc pointers */

Appendix

Developers GGuide for MINIX on the SCC

This guide explains how to use the MINIX implementation for the SCC. It is assumed that the
reader is familiar with the command line and that the SCC and MCPC available and installed.
Section explains how to build the MINIX OS image which can be uploaded and ran on the
SCC. Section [C.2] and [C.3] describe step by step how to initialize the SCC and how to start MINIX
using sccKit commands. Finally, Section explains how to do optional configuration of the
MINIX implementation.

C.1 Building

The first step is to build the MINIX OS image. Assuming the source code is available in the minix-
scc.git directory, the following commands compile MINIX and generate the boot_scc/image.obj
image:

$ cd /path/to/minix-scc.git
$ make clean
$ make all

After make all completes, look in the boot_scc directory and check if the image.obj exists. It
should be about 3MB large. On success, you may continue to the next step in Section[C.3|to boot
MINIX on the SCC.

C.2 Initialization

Running MINIX on the SCC requires two steps. First, the SCC must be powered on and initialized.
The initialization must be done only before any program is able to run on the SCC and only needs
to be done once. Second, the sccKit commands should be used to upload the MINIX OS image to
the SCC and trigger a global CPU reset such that the cores start booting MINIX. If applicable,
connect to the MCPC via SSH. Be sure to use the -XC arguments if you intent to use the sccGui
command to boot MINIX (recommended):

niekQubuntu$ ssh -p2222 -XC niekl@mcpc

To power on the SCC, you must connect to the on-board BMC via telnet. This is a small ARM
board to manage the SCC. Give the telnet_bmc command to connect. You should see the
following text on success:

niekl@arrakis:”/minix-scc.git$ telnet_bmc
Trying 192.168.2.127...

7

C.2. INITIALIZATION APPENDIX C. DEVELOPERS GUIDE FOR MINIX ON THE SCC

Connected to bmc.
Escape character is ’7]°.
sk sk ok ke ok sk sk ok e ok sk sk ok s ok sk ok sk ke ok sk sk sk e ok sk sk o sk ok sk sk ok sksk s s ok sk sk sk s ok sk s ok sksk sk e ok sk sk sk sk ke sk sk sk sk ke ok sk sk sk ok sk sk ok sk ok

/1 L 1.\ L U0/ e -3 Ul 0/ 1\
DN T s T\ ol TN e 3 T N
[A L T e T T

RN T UN T e 1
Y Y
R A T RN

3K >k 3K 3K 3K 3K 3K 3k 5k 5k 3k k 5k 5k 5k 5k K 5k 5K 5k 3k 5k 5k 5k 5k 5k 5k 5k 5k K 3K 5K 5K 5K 3k 3k 5k 5k 5k 5k 5k 5k %K 5K 3K 5K 5K 5K 5k 3k 5k 5k 5k 5k 5k %k K >k 5K 5K 5K 5k 5k 5k %k >k >k >k %k %k X >k >k 5 >k >k %k %k k %k

Copyright 2010 by Intel Corporation
Intel Labs - Germany Microprocessor Lab

Board Serial# 01095100089
Usable GB ETH 0110

Software: 1.10 Build: 1228 O0Oct 12 2010 18:18:01
CPLD: 1.07

HW-ID: 0x00

POWR1220: 0xC0000001 (master), 0x40000001 (slave)

DDR3 modules: Present: 01 2 34567

Welcome to the BMC server of rocky_lake_board!
You are participant #1

1>

To turn on the SCC, you need to enter the power on command. Respectively, power off can be
used to turn off the SCC. On success, you should see the following text:

I>power on

Switching on the board.

Initializing OPVRs

Downloading FPGA bitstream

SelectMap: Processing bitstream file "/mnt/flash4/r1_20110308_ab.bit".
Filesize is 3889967 bytes.

Done.

Switching OPVRs on.

JTAG INIT

Resetting SCC JTAG interface.

JTAG READ LEFT PLL

Select JCU: JTAG_JCU_LEFT (PLL)!

Read Chain: 040F8002200A

END

JTAG WRITE LEFT PLL 008000A280A

JTAG WRITE RIGHT SYSIF OA100EOOOF8E

PLL lock LED is ON.

78

APPENDIX C. DEVELOPERS GUIDE FOR MINIX ON THE SCC C.2. INITIALIZATION

JTAG WRITE MCO AFE 001203201D8811800000F00122000002000000B0O00C70800EO0
JTAG WRITE MC1 AFE 001203201D8811800000F00122000002000000B000C70800E0
JTAG WRITE MC2 AFE 001203201D8811800000F00122000002000000B000C70800E0
JTAG WRITE MC3 AFE 001203201D8811800000F00122000002000000B000C70800E0
JTAG WRITE MCO RST FF

JTAG WRITE MC1 RST FF

JTAG WRITE MC2 RST FF

JTAG WRITE MC3 RST FF

JTAG WRITE MCO RST 00

JTAG WRITE MC1 RST 00

JTAG WRITE MC2 RST 00

JTAG WRITE MC3 RST 00

PHY INIT

Done.

telnet> close
Connection closed.
niekl@arrakis:”/minix-scc.git$

At this point the SCC is in a powered on state, but it is not yet initialized. You must use the
sccBmc command with the -i option to do this, or the SCC will not work. When you execute
sccBmc -i, you should see the following text:

niekl@arrakis:~/minix-scc.git$ sccBmec -1

INFO: openBMCConnection(192.168.2.127:5010): You are participant #1
INFO: Packet tracing is disabled...

INFO: Initializing System Interface (SCEMI setup)....

INFO: Successfully connected to PCIe driver...

INFO: Welcome to sccBmc 1.4.0 (build date Mar 21 2011 - 18:42:49)...
INFO: This tool allows you to (re-)initialize the SCC platform.
This means that the reset of the actual SCC device is triggered and
that all clock settings are programmed from scratch. The (re-)
programming of the clock settings also implies a training of the
physical System Interface!

Short said: The whole procedure takes a while and you should only do
it when necessary! This step is NOT always required after starting
the GUI. You would normally invoke it when the system reset executes
with errors or when the board has just been powered up...

Please select from the following possibilities:
INFO: (0) Tile533_Mesh800_DDR80O

INFO: (1) Tile800_Mesh1600_DDR1066

INFO: (2) Tile800_Mesh1600_DDR800

INFO: (3) Tile800_Mesh800_DDR1066

INFO: (4) Tile800_Mesh800_DDR80O

INFO: (others) Abort!

Make your selection:

79

C.2. INITIALIZATION APPENDIX C. DEVELOPERS GUIDE FOR MINIX ON THE SCC

Here sccBmec asks for the preferred configuration. Choose option (1) here. The MINIX imple-
mentation is configuration by default for a tile speed of 800MHz. You must choose the same tile
frequency setting as configured in MINIX, as otherwise the clock timing code would be inaccurate.
See Section for more details on changing configuration parameters in MINIX. After choosing
the configuration, the following output should be shown on success:

INFO: Starting system initialization (with setting Tile800_Mesh1600_DDR1066) ...
processRCCFile(): Configuring SCC with content of file "/opt/sccKit/1.4.0/"

INFO: Trying to train in preset mode:

INFO: Resetting Rocky Lake SCC device: Done.

INFO: Resetting Rocky Lake FPGA: Done.

INFO: Re-Initializing PCIe driver...

INFO: FPGA version register value: 0x20110308

INFO: Loading SIF system settings: RX Data delay is 27 and RX Clock delay is 46...
INFO: Programming done. Testing:

INFO: Enabling RC pattern generation + FPGA monitoring for current delay...

INFO: Enabling FPGA pattern generation + FPGA monitoring for current delay...
INFO: Done... Disabling pattern generation -> Good range of this run is 7...
INFO: Resetting Rocky Lake SCC device: Done.

INFO: Resetting Rocky Lake FPGA: Done.

INFO: Configuring memory controllers:

INFO: processRCCFile(): Configuring SCC with content of file "/opt/sccKit/1.4.0/"
INFO: [line 0014] ##t#sHtitt ittt HHHHEHEREHEHEREEEEEEHHEE R

INFO: [line 0015] ### Rock Creek setup: #itH#
INFO: [line 0017] ### - Global Clock GC = 1600 MHz HHH##
INFO: [line 0021] ### - Tile clock = 800 MHz HH###
INFO: [line 0022] ### - Router clock = 1600 MHz #it#
INFO: [line 0049] ### - SIF clock = 266 MHz HH#H##
INFO: [line 0108] ### - DDR3-1066 7-7-7-20 H##tH##
INFO: [line 01641 ##t#tttfH R H
INFO: [line 0165] ### Rock Creek MCO setup DDR3-1066 7-7-7-20 H###
INFO: [line 0166] ##t#tii
INFO: [line 0176] ---- AFE Padscan init -————--—————————————————
INFO: [line 0239] ---- AFE power on sequence —-——-—-——-—-————————————————————
INFO: [line 0272] ---- Initial Compensation ——-—-——--——=———————————————————
INFO: [line 0298] ---- Setup controller parameters —--—---—--—-————————--——-
INFO: [line 0900] ---- Periodic Compensation --------—-————————————————-
INFO: [line 0926] ---- Controller setup and SDRAM initialization -------
INFO: [line 0993] ##tttttitit ittt
INFO: [line 0994] ### Rock Creek MC1 setup DDR3-1066 7-7-7-20 HHH##
INFO: [line 0995] ##t#ttttf R
INFO: [line 1005] ---- AFE Padscan init ---------——---————————————mmmmmm
INFO: [line 1068] ---- AFE power on sequence —-—-——-——-———=——=—————=———————————
INFO: [line 1101] ---- Initial Compensation ——-———=———=————=————————————————
INFO: [line 1127] ---- Setup controller parameters —-—-—--—--—-—-——-——————-
INFO: [line 1729] ---- Periodic Compensation —------—--—————————————————-
INFO: [line 1755] ---- Controller setup and SDRAM initialization -------
INFO: [line 1822] ##t#tttit it
INFO: [line 1823] ### Rock Creek MC2 setup DDR3-1066 7-7-7-20 #iti#
INFO: [line 1824] ##dttttt#it st
INFO: [line 1834] ---- AFE Padscan init —-——-—-—-——————————————————
INFO: [line 1897] ---- AFE power on sequence —-—-——-—-——-—-———————————————————
INFO: [line 1930] ---- Initial Compensation ------—-———————————————————-
INFO: [line 1956] ---- Setup controller parameters —-—-—--—-—-———————————~-

80

APPENDIX C. DEVELOPERS GUIDE FOR MINIX ON THE SCC C.2. INITIALIZATION

INFO: [line 2558] ---- Periodic Compensation ——-——-———-—-————————————————

INFO: [line 2584] ---- Controller setup and SDRAM initialization -------

INFO: [line 26511 sttt
INFO: [line 2652] ### Rock Creek MC3 setup DDR3-1066 7-7-7-20 H#H##H
INFO: [line 2653] ########H####HHHHHHHHHHHH BB
INFO: [line 2663] ---- AFE Padscan init - ————---------------—————

INFO: [line 2726] ---- AFE power on sequence —-—-——-——-———=——————————————————

INFO: [line 2759] ---- Initial Compensation —----——-———-—-—————————————————

INFO: [line 2785] ---- Setup controller parameters —-—---—-————--————————--

INFO: [line 3387] ---- Periodic Compensation --------——————————————————-

INFO: [line 3413] ---- Controller setup and SDRAM initialization -------

INFO: [line 3479] ---- Start Normal Operation —-—-—----—————————————————

INFO: [line 3498] ---- Write data —-—————————————————————————

INFO: [line 3541] ---- Read data from MCO rank O ————————————————————————————
INFO: [line 3542] MEMRD INFO MCO: Read data 34D865EF432C2AC6 729D177E3CD30EE6
INFO: [line 3543] MEMRD INFO MCO: Read data F4472F66280AD037 4957394751261518
INFO: [line 3544] ---- Read data from MCO rank 1 -———————————————————————————
INFO: [line 3545] MEMRD INFO MCO: Read data 657226DC28F56C3A 285F5179DE684FAQ
INFO: [line 3546] MEMRD INFO MCO: Read data D54ACCA7421CD305 BEOE2B494EDA4C87
INFO: [line 3547] ---- Read data from MCO rank 2 ————————————————————————————
INFO: [line 3548] MEMRD INFO MCO: Read data 8309B135A9FD8430 4175B2E1DA0462D7
INFO: [line 3549] MEMRD INFO MCO: Read data 649BC11B02B4C008 D9358B5B461D5821
INFO: [line 3550] ---- Read data from MCO rank 3 —-————————————————————————————
INFO: [line 3551] MEMRD INFO MCO: Read data 401839250FEAE7CO 56489C9ECFC5B485
INFO: [line 3552] MEMRD INFO MCO: Read data C60EB2EF13DDFF84 61288BF34DCA9F33
INFO: [line 3554] ---- Read data from MC1 rank 0 —-—-——————————————————————————
INFO: [line 3555] MEMRD INFO MC1: Read data 34D865EF432C2AC6 729D177E3CD30EE6
INFO: [line 3556] MEMRD INFO MC1: Read data F4472F66280AD037 4957394751261518
INFO: [line 3557] ---- Read data from MC1 rank 1 —-———————————————————————————
INFO: [line 3558] MEMRD INFO MC1: Read data 657226DC28F56C3A 285F5179DE684FAQ
INFO: [line 3559] MEMRD INFO MC1: Read data D54ACCA7421CD305 BEOE2B494EDA4C87
INFO: [line 3560] ---- Read data from MC1 rank 2 ———-——————————————————————————
INFO: [line 3561] MEMRD INFO MC1: Read data 8309B135A9FD8430 4175B2E1DA0462D7
INFO: [line 3562] MEMRD INFO MC1: Read data 649BC11B02B4C008 D9358B5B461D5821
INFO: [line 3563] ---- Read data from MC1 rank 3 ——-——————————————————————————o
INFO: [line 3564] MEMRD INFO MC1: Read data 401839250FEAE7CO 56489C9ECFC5B485
INFO: [line 3565] MEMRD INFO MC1: Read data C60EB2EF13DDFF84 61288BF34DCA9F33
INFO: [line 3567] ---- Read data from MC2 rank 0 —-—-——————=———————————————————
INFO: [line 3568] MEMRD INFO MC2: Read data 34D865EF432C2AC6 729D177E3CD30EE6
INFO: [line 3569] MEMRD INFO MC2: Read data F4472F66280AD037 4957394751261518
INFO: [line 3570] ---- Read data from MC2 rank 1 —---——————————————————
INFO: [line 3571] MEMRD INFO MC2: Read data 657226DC28F56C3A 285F5179DE684FAQ
INFO: [line 3572] MEMRD INFO MC2: Read data D54ACCA7421CD305 BEOE2B494EDA4C87
INFO: [line 3573] ---- Read data from MC2 rank 2 --—-——————————————————————————
INFO: [line 3574] MEMRD INFO MC2: Read data 8309B135A9FD8430 4175B2E1DA0462D7
INFO: [line 3575] MEMRD INFO MC2: Read data 649BC11B02B4C008 D9358B5B461D5821
INFO: [line 3576] ---- Read data from MC2 rank 3 —-————————————————————————
INFO: [line 3577] MEMRD INFO MC2: Read data 401839250FEAE7CO 56489C9ECFC5B485
INFO: [line 3578] MEMRD INFO MC2: Read data C60EB2EF13DDFF84 61288BF34DCA9F33
INFO: [line 3580] ---- Read data from MC3 rank 0 —-————————————————————————————
INFO: [line 3581] MEMRD INFO MC3: Read data 34D865EF432C2AC6 729D177E3CD30EE6
INFO: [line 3582] MEMRD INFO MC3: Read data F4472F66280AD037 4957394751261518
INFO: [line 3583] ---- Read data from MC3 rank 1 -—-——————————————————————————
INFO: [line 3584] MEMRD INFO MC3: Read data 657226DC28F56C3A 285F5179DE6GS84FAQ

81

C.3. BOOTING APPENDIX C. DEVELOPERS GUIDE FOR MINIX ON THE SCC

INFO: [line 3585] MEMRD INFO MC3: Read data D54ACCA7421CD305 BEOE2B494EDA4C87
INFO: [line 3586] ---- Read data from MC3 rank 2 —-———————————————————————————
INFO: [line 3587] MEMRD INFO MC3: Read data 8309B135A9FD8430 4175B2E1DA0462D7
INFO: [line 3588] MEMRD INFO MC3: Read data 649BC11B02B4C008 D9358B5B461D5821
INFO: [line 3589] ---- Read data from MC3 rank 3 --————---———————————————————
INFO: [line 3590] MEMRD INFO MC3: Read data 401839250FEAE7CO 56489C9ECFC5B485
INFO: [line 3591] MEMRD INFO MC3: Read data C60EB2EF13DDFF84 61288BF34DCA9F33
INFO: [line 3595] INFO: CCF enabled in normal op mode

INFO: [line 3596] INFO: CCF enabled in normal op mode

INFO: [line 3597] INFO: CCF enabled in normal op mode

INFO: [line 3598] 1INFO: CCF enabled in normal op mode

INFO: [line 3600] ---- Rock Creek setup DONE -——-——————————————————————

INFO: (Re-)configuring GRB registers...

niekl@arrakis:”/minix-scc.git$

Once sccBmc terminates, the SCC initialization is completed. You only need to do these steps
once and not every time you boot a new tryout image.

C.3 Booting

After the SCC initialization has run, it is possible to boot a MINIX OS image on the SCC. In the
following example, we start MINIX on cores 0 and 1, each with their own Ipctest server instance,
where core 0 sends 10000 synchronous messages to core 1.

First, reset all cores in the SCC to a known state:

niekl@arrakis:”/minix-scc.git$ sccReset -g

INFO: Welcome to sccReset 1.4.0 (build date Mar 21 2011 - 18:40:25)...
INFO: Applying global software reset to SCC (cores & CRB registers)...
INFO: (Re-)configuring GRB registers...

Now we start the sccGui program. This is a graphical interface which can be used to upload OS
images to the SCC and capture output from the cores:

niekl@arrakis:”/minix-scc.git$ sccGui

When sccGui starts, it should open an new window. If this is the first time you boot a MINIX
image, you need to tell sccGui where to find the MINIX OS image. Click on Settings — Linux
Boot Settings — Choose Custom Linux Image (File Dialog). A new window should open.
Select the boot_scc/image.obj from your minix-scc.git directory and click OK.

Additionally, if this is your first time with sccGui, you need to configure sccGui to capture
writes to the serial port. Click on Settings — Debug Settings — Enable Software RAM and
UART.

You are now ready to boot MINIX. Before you boot MINIX, all MPBs must be cleared to zero.
You can do this manually by clicking on Tools — Clear MPB(s) - OK. Alternatively, you can
configure sccGui to always clear MPBs when you boot a new image with: Settings — Linux
Boot Settings — Clear MPB(s) before Booting.

Boot the MINIX OS image by clicking on Tools — Boot Linux. Select the appropriate cores

to start, in our example core 0 and 1, and click on OK. A new window should popup quickly
showing the MINIX boot output:

82

APPENDIX C. DEVELOPERS GUIDE FOR MINIX ON THE SCC C.4. CONFIGURATION

CPU 0 freq 800 MHz

APIC timer

calibrated

Boot cpu apic id 0
APIC debugging is enabled
Initiating APIC timer handler

MINIX 3.1.
Copyright
MINIX is o

8bs @ Aug 10 2011 23:47:51 [SCC APIC]
2010, Vrije Universiteit, Amsterdam, The Netherlands
pen source software, see http://www.minix3.org

Build arrakis-10-08-2011-23:47

Using LAPI
DS: CPUs o
MINIX SCC
ipctestO:
ipctestO:
ipctestO:
ipctestO:

&scc_stats.

&scc_stats
&scc_stats
&scc_stats

&scc_stats.
&scc_stats.

&scc_stats

&scc_stats.
&scc_stats.
&scc_stats.
&scc_stats.
&scc_stats.
&scc_stats.

C timer as tick source

nline are [0 1]

started

running in remote-mode on endpt Oxlldaa, pid 14, coreid 0, tileid O
instance O [O sends, O receives, 17.150120 secs]
instance 1 [10000 sends, O receives, 17.150119 secs]
total start/stop execution time: 17.150145 secs
scan_mpb took 316200 (AVG: 317887 in 10074 runs)
.loop_newq took O (AVG: O in O rums)

.try_receive took O (AVG: O in O rums)

.process_msg took 349110 (AVG: 351165 in 10002 runs)
incoming_msg took 41040 (AVG: 41405 in 10002 runs)
enqueue_msg took 13472 (AVG: 13481 in 2 runs)
.write_mpb took 32142 (AVG: 31978 in 10002 runs)
ipis_send took 10289 (AVG: 10488 in 10002 runs)
ipis_recv took 358934 (AVG: 361333 in 10002 runs)
scc_send took 141861 (AVG: 141720 in 10000 runs)
scc_recv took 415377 (AVG: 384881 in 74 runs)
scc_senda took 86262 (AVG: 87145 in 2 runs)
scc_notify took O (AVG: O in O runs)

If you see the above output, MINIX has started successfully. When you are done with testing, do
not forget to run sccReset before you logout, as otherwise the SCC would still be running code.
We had several MCPC crashes earlier when we left images running.

C.4 Configuration

Configuration the MINIX implementation is easy done with a few C header files and Makefiles.
The include/scc/debug.h configures Debug Mode. You may set the SCC_DEBUG macro to
any of the SCC_DEBUG_* to selectively enable debug output in components throught the SCC
code. Set it to zero to disable debugging:

/* Debug type flags. */

#define SCCDEBUGBOOT (1 << 0)
#define SCC_DEBUGIPC (1 << 1)
#define SCCDEBUGIPCDUMP (1 << 2)
#define SCC_DEBUG_IPI (1 << 3)
#define SCCDEBUG.USER (1 << 4)
#define SCC_DEBUG.USERIPC (1 << 5)
#define SCC_DEBUG_SCHED (1 << 6)
#define SCCDEBUG._DS (1 << 7)
#define SCC_DEBUG-ALL (Oxffffffff)
/* Enabled debugging flags. =/

#define SCCDEBUG 0

83

36

C.4. CONFIGURATION APPENDIX C. DEVELOPERS GUIDE FOR MINIX ON THE SCC

For changing the tile speed in MINIX, look in include/scc/clock.h. The SCC_TILE FREQ
macro is set by default to 800MHz:

#define SCC_TILEFREQ (800 * SCCMHZ)

The implementation has performance counters in the IPC code which may be used to debug per-
formance problems. include/scc/perf.h contains the SCC_PERF macro. Uncomment it to
enable performance counters and comment it to disable.

/* Enable/disable performance counting. */
#define SCC_PERF

To change MPB messaging schemes and choose between IPI and Polling mode, use the include/sc-
c/kern/conf.h file. Tt is not allowed to choose both Split Shared and Lock Shared, only one must
be enabled at a time. On the other hand, IPI mode and Polling mode can be enabled both if
desired, but not recommended. You should enable only one, but never disable both:

/%
* MPB Message Delivery.
*/

/% Split MPB in per—CPU slots. x/
//#define SCC.USE-MPBSPLIT

/% Use the MPB as a big queue with locking. x/
#define SCC_.USE.MPBLOCK

/%

* Notifications.

*/

/* Invoke scc_process_-msg () regulary during ezecution. x/
//#define SCC.USE_POLLING

/* Invoke scc_process-msg () from inside an IPI handler. x/
#define SCC_USE_IPI

/% Only send IPI’s once processing is complete. Awvoids sending
* a series of IPI’s to the same destination. x/
//#define SCC_DELAY_IPIS

/% Only send back an IPI if both the internal receive buffers

* and the MPB have no new message for wus. If disabled an IPI is
* send every time a message is removed from the MPB.

*

#define SCC_IPLIFQEMPTY

/* Do not try again if the destination MPB ts full. Instead
* wait until the destination send back an IPI. Only wvalid for IPI mode.
*/

#define SCCNOTRYAGAIN

The kernel buffers incoming messages from other cores which cannot be delivered immediately. Per
default, there is room for 8K messages but it can be changes in the include/scc/kern/msg.h file:

/* Mazimum number of messages to buffer. x/
#define SCC_RECV_SZ 8192

84

S UL W N

ot

APPENDIX C. DEVELOPERS GUIDE FOR MINIX ON THE SCC C.4. CONFIGURATION

To change the test scenario in the Ipctest program, modify the servers/ipctest/Makefile to
include a different test object:

Makefile for ipctest
TARGETS := ipctest

OBJS—ipctest := main.o generic.o test/send/one_-to_one.o

include ../ Makefile.inc

If you want to start Ipctest in local mode, you can configure it in servers/ipctest/conf.h. Note
that Ipctest can only run in either local or remote mode, not both.

/* Number of local instances to start. Undefine for remote. x/
//#define SCC.IPCTEST-LOCAL 2

Finally, all tests have a constant which defines how many messages to send. For example, the one-
to-one send() scenario has the NUM_SEND macro in servers/ipctest /test /send /one_to_one.c:

#define NUMSEND 10000 I

85

C.4. CONFIGURATION APPENDIX C. DEVELOPERS GUIDE FOR MINIX ON THE SCC

86

	List of Figures
	Glossary
	Introduction
	Background
	Microkernels
	MINIX
	Booting
	Scheduling
	Synchronous IPC
	Asynchronous IPC
	IPC Endpoints
	Input, Output and Interrupts
	Servers
	Drivers
	SMP

	Single Chip Cloud Computer
	Tiles
	Memory Architecture
	Management and Control PC

	Design
	Requirements
	Cache Incoherence
	Global Addressing
	Remote Process Stubs
	Alternative: Encoding Endpoints
	Alternative: Splitting Process Slot Address Space
	Alternative: Global Process Table
	Alternative: Userspace IPC Server

	Endpoint Discovery
	IPC Message passing
	Split Shared Queue
	Lock Shared Queue
	Event Notifications

	Implementation
	Overview
	Bootcode
	DS
	Kernel
	Process Structure
	Synchronous IPC
	Asynchronous IPC
	Event Notifications
	MPB schemes
	New Kernel Calls

	Evaluation
	Setup
	One-to-One
	One-to-Many
	Many-to-One

	Future Work
	Related Work
	Conclusion
	Bibliography
	Default LUTs
	Kernel Process Table Structure
	Developers Guide for MINIX on the SCC
	Building
	Initialization
	Booting
	Configuration

