
Hogeschool Utrecht

Vrije Universiteit Amsterdam

Implementing A Large-Scale Distributed
Database on XtreemOS

Author:
Niek Linnenbank

Supervisor:
Guillaume Pierre

Examiner:
Leo van Moergestel

May 28, 2009

1500967



Abstract

Currently the XtreemOS grid does not have a scalable distributed database suitable for cloud com-
puting. This thesis presents the implementation of Apache HBase on XtreemOS. Apache HBase
is an open source scalable distributed database modeled after Google BigTable. In XtreemOS the
XtreemFS distributed filesystem can be used to provide shared storage to all HBase nodes. Using
the XtreemOS DIXI framework, it is possible to submit jobs to be executed on available nodes in
the XtreemOS grid. By careful submission of DIXI jobs, it is possible to add and remove HBase
region servers from the XtreemOS grid. Experiments show that HBase is scalable on XtreemOS.



Acknowledgements

This project would never have been possible without the help of many people I have met at the
VU and in the last several years. First I would like to thank Guillaume for giving me the great
opportunity to participate in and learn from the XtreemOS project, the System Programming
class and overall his excellent supervising during the project. Next I thank Corina for her work on
the VU testbed, which provided me and other students a platform for experiments, development
and performance benchmarks. Ofcourse great many thanks to my parents, for supporting me both
financially and socially during my studies. Next thanks go to Leo van Moergestel as without his
permission letter I would not have been able to register as a pre-master student at the VU, nor
could I have followed pre-master courses last September nor taken place in this project. Another
thanks to the XtreemOS DIXI developers who helped me during this project to solve problems
and bugs.

Special thanks to Pieter Lange and the Hogeschool Utrecht Linux Kennisgroep (HULK). Pieter
introduced me to the wonderful world of Linux and learned me to use it. During the years of
study on the HU, we and several other Linux and open source entheusiasts formed the HULK,
which currently provides hosting services HU students and develops publicly available open source
projects. Majid Hossainy, system administrator at the Hogeschool Utrecht, made the existence the
HULK possible by helping us with organization, supplying hardware and finding available room
for us and the servers. The HULK has been a great place to practice computing just for the fun
of it and I very much look forward to go to Hacking At Random 2009 with the HULK.

2



Contents

List of Figures 5

Glossary 7

1 Introduction 8

2 Related Work 10

3 Background 11
3.1 XtreemOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Application Execution Management . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Infrastructure for Highly-available and Scalable Services . . . . . . . . . . . 13
3.1.3 Virtual Organization Management . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.4 Security Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.5 Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.6 XtreemOS API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 XtreemFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Metadata and Replication Catalog . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Object Storage Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.3 Directory Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.4 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Scalable distributed databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.1 Google BigTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.2 Amazon SimpleDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.3 Apache HBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Project Plan 20
4.1 Project goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3.2 Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 Risk analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.7 Quality assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.8 Costs and gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3



CONTENTS CONTENTS

5 Implementation 26
5.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 HBase requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Java Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.3 Shared filesystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.4 Remote execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.5 Time synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.6 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.7 Automating administration . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 User Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.1 hbase-xos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 hbase-xos-master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.3 hbase-xos-region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.4 hbase-xos-setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.1 RPM package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3.2 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4.1 Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4.2 Sequential Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4.3 Random Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4.4 Random Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4.5 Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Project Evaluation 39
6.1 Learnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1.1 XtreemOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1.2 XtreemFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1.3 HBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1.4 English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Development evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.1 Default HBase on XtreemOS . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.2 HBase on top of XtreemFS . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.3 Running as the VO-user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2.4 Invoking HBase using DIXI jobs . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.5 Implementing hbase-xos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 XtreemOS experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.3 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.3.4 Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.4 Project management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Conclusion 44

A Vrije Universiteit Organigram 45

B HBase-Xos Manual Page 46

C HBase-Xos Program 48

D HBase Performance Evaluation Program 59

Bibliography 60

4



List of Figures

3.1 Overview of the XtreemOS architecture. . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Virtual Organizations allows sharing resources between organizations. . . . . . . . 13
3.3 Overview of the XtreemFS architecture. . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 The XtreemFS client uses FUSE to mount volumes on the local filesystem. . . . . 15
3.5 An example BigTable which stores Web pages (adapted from [1]) . . . . . . . . . . 16
3.6 Tablet location hierarchy used in BigTable (adapted from [1]) . . . . . . . . . . . . 17
3.7 The purple and red colored feather is the logo the Apache Software Foundation . . 19

4.1 The logo of the VU is a blue griffin . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Outline of planned activities in the project . . . . . . . . . . . . . . . . . . . . . . 24

5.1 Example HBase configuration when using HDFS as shared filesystem . . . . . . . . 27
5.2 Scheduling jobs in DIXI on different resource nodes using reservations . . . . . . . 28
5.3 hbase-xos interacts with DIXI to submit HBase jobs to XtreemOS. . . . . . . . . . 30
5.4 Performance results of the Sequential Read test . . . . . . . . . . . . . . . . . . . . 33
5.5 The Sequential Read test performs a read on each row key in order . . . . . . . . . 33
5.6 Performance results of the Sequential Write test . . . . . . . . . . . . . . . . . . . . 34
5.7 The Sequential Write test performs a write on each row key in order . . . . . . . . 34
5.8 Performance results of the Random Read test . . . . . . . . . . . . . . . . . . . . . 35
5.9 Random Read requests a read on each row key in random order . . . . . . . . . . . 35
5.10 Performance results of the Random Write test . . . . . . . . . . . . . . . . . . . . . 36
5.11 Random Write requests a write on each row key in random order . . . . . . . . . . 36
5.12 Performance results of the Scan test . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.13 Scans request a read of a range of row keys . . . . . . . . . . . . . . . . . . . . . . 37

5



Glossary

API Application Programming Interface, 12, 18, 19,
41, 42, 44

bug Programming error in a computer program, 8,
25

bugtracker System for displaying and organizing currently
known bugs and previous bugs in computer soft-
ware, 8

client Computer program which initiates a request to
a (remote) service, 10, 15–17, 19, 28, 32, 33,
35–37, 42

cloud computing Customers rent and use the cloud provider’s in-
frastructure without knowning the location, op-
erating system and hardware of the machines
they use. Cloud providers often adopt the util-
ity computing model for billing customers, 8, 18

cluster computing Computing model in which a group computers
connected by local network are used to perform
collaborative computation. Nodes in a cluster
have the same hardware and software, and be-
long to one administrative domain, 12

consistency Correctness of data presented by a computing
system. In order to be consistent, the data must
not contradict or conflict itself, 10

database Computer program for efficient inserting, modi-
fying, deleting and querying of structured data,
8, 10, 16, 18, 19, 21, 25, 40

filesystem Operating system component responsible for or-
ganizing data on storage devices, 8, 12, 14, 15,
17, 27, 28, 40–43

6



Glossary Glossary

grid computing Computing model where computing resources of
multiple administrative domains are bundled by
a network for collaborative computation. Un-
like clusters, nodes in a grid may have different
hardware, operating systems, network connec-
tivity and security policies, 8, 12, 28, 29, 40,
42

HTTP HyperText Transfer Protocol, 14, 19
HU Hogeschool Utrecht, 21

I/O Input and Output, 8

kernel Core operating system component responsi-
ble for process management, memory manage-
ment, inter process communcation and option-
ally more functionality, 15, 28

node A single computer connected to a network, 8,
10, 12, 27, 28, 32, 38, 40–42, 44

open source Software licensing model where distribution,
modification and copying of source code is per-
mitted, 8

POSIX Portable Operating System Interface for UniX,
15, 19, 21, 28

source code Human readable program text, which may be
interpreted or compiled into machine language
for execution by the computer, 8, 28, 29, 40, 41,
43

throughput The average rate of data processed, often ex-
pressed in bits or bytes per second, 8, 38

URL Uniform Resource Locator, 27, 28
utility computing Computing paradigm in which computing re-

sources are seen as public utility services, 8

VU Vrije Universiteit, 21, 22, 35, 38

XML Extensible Markup Language, 8, 19, 28, 29

7



Chapter1
Introduction

As the number of users in modern computing grows into the millions, several new paradigms have
evolved in order to deal with their demands, such as utility computing. In utility computing
customers use the computing resources from a service provider and pay only for the amount of
resources they use, instead of the full purchase price of the machines they use. The word utility in
utility computing is used to make an analogy to public services, such as electricity, gas and water.
Utility computing services can be provided in the form of a grid computing or cloud computing
infrastructure. Grids consist of typically large numbers of compute nodes connected by a net-
work, specialized for running computational intensive jobs. Nodes in a grid may exist in different
administrative domains, can have different hardware, operating systems, networks and security
policies. Cloud computing infrastructures are often provided by one administrative domain. In
cloud computing customers can develop, deploy and run applications on a cloud provider’s infras-
tructure [2, 3], without knowing details like the location, operating system and hardware of the
machines they use. The cloud can be seen as an infinite pool of computational resources from
which customers may take or give back based on their needs. Beneficial for customers is that they
do not need to purchase expensive hardware, thereby also avoiding installation and maintenance
costs. Many cloud providers have adopted the utility computing model for billing customers and
may depend on grids to make their resources available for customers.

A grid operating system in current development is XtreemOS [4]. It is an ongoing project funded
by the European Commision (2006-2010). The XtreemOS project aims to build a Linux-based [5]
grid operating system, to support Virtual Organizations (VO) [6]. VO’s are used to define a set
of users and resources provided by real organizations. During the lifespan of a VO, users can run
their applications, given they are properly authenticated. The XtreemFS [7] distributed filesys-
tem included in XtreemOS enables users to access their files from any resource node in the grid.
XtreemFS is capable of replication, parallel I/O and distribution of large amounts of data spread
among the available resource nodes. Because XtreemFS supports such a huge storage capacity,
users may want to use it for more purposes such as running a highly scalable database suitable for
cloud computing on top of XtreemFS. Currently XtreemOS does not have such scalable database.

One could be tempted to think of a traditional relational database as a solution for this problem.
This will work for a few nodes, however it does not scale to millions [8]. The reason a relational
database cannot scale to such numbers is that they are replicated: each node needs a complete
copy to work. Therefore the maximum throughput is dictated by the degree of replication [9]. It
is sometimes said that relational databases scale easy vertically but are hard to scale horizontally.
This means a relational database running on a single node can achieve greater performance to a
certain boundary by upgrading the machine (vertical), which may be financially expensive. By
adding more machines relational databases may grow further in terms of performance (horizontal),
but only until replication becomes a bottleneck.

8



CHAPTER 1. INTRODUCTION

Fortunately there exists a class of highly scalable databases, pioneered by Google BigTable [10]
and Amazon SimpleDB [11]. These systems have a different design than relational databases
which allows them to be highly scalable. They present client applications a sparse, distributed,
persistent, multidimensional, sorted map. The map consists of rows and columns, allowing ap-
plications to access it using key to value translation. High scalability is achieved because ranges
of rows in the map are distributed among a great number of cheap commodity servers, thereby
also keeping financial costs low [12]. Unfortunately both BigTable and SimpleDB are commercial
products, which prevents XtreemOS as an open source project to redistribute it. There are how-
ever open source alternatives to BigTable which can be included in XtreemOS, like Apache HBase
[13]. HBase describes itself as an open-source, distributed, column-oriented store modeled after
the Google BigTable paper [1].

HBase was initially not designed to run on a grid like XtreemOS. For example, the HBase con-
figuration is a static XML [14] file, which needs to be regenerated containing the address of a
master node somewhere in the XtreemOS grid. Additionally, XtreemOS is still a relatively new
and experimental system. Unfortunately this means that it contains many (un)known problems
and programming errors [15], and many are yet to be discovered. Because XtreemOS is in heavy
development, user and developer documentations are often out of date, incomplete or non existent.
This eventually requires one to read the XtreemOS source code, which in turn is undocumented
in many places, and hard to read. Therefore it is currently a difficult task to implement any new
application on XtreemOS.

During this project I have spend a significant amount of time to learn the various components
involved in XtreemOS, XtreemFS and HBase. Due to the complex nature of distributed systems
and the many different services in XtreemOS it can take a big effort for new developers in this
area to understand their concepts. By using the XtreemOS testbed at the Vrije Universiteit [16],
experimenting with HBase and eventually reading parts of their sourcecode I was able to learn and
meanwhile prepare myself to get started with the actual implementation. I have written a python
program called hbase-xos which is able to submit jobs to XtreemOS to run HBase instances on
nodes in the grid, using XtreemFS for data storage and configuration. Documentation is available
in the hbase-xos manual page and comments inside the sourcecode. I have packaged HBase and the
hbase-xos script in RPM format. They will be included in the second public release of XtreemOS.
While developing hbase-xos I have encountered several (un)known problems in XtreemOS and
reported those which where directly reproducible to the bugtracker or their authors. For this
reason I installed a test installation of several XtreemOS nodes in VMware, which I used instead
of the Vrije Universiteit testbed to workaround bugs, simulate crashes and try out new versions
of XtreemOS components from the Subversion repository. At the Vrije Universiteit testbed I per-
formed benchmarks of HBase which indicate HBase is scalable on XtreemOS using XtreemFS as
the distributed shared filesystem.

The rest of this thesis is organized as follows. Section 2 describes related research and work
done in this area. Section 3 lists the project as it was originally planned when it started. In
section 4 the current implementation of HBase on XtreemOS is presented. Section 5 evaluates the
experiments, implementation and project as a whole and section 6 concludes.

9



Chapter2
Related Work

Over the years scalable databases has been an active topic in computer science research. Tra-
ditional relational databases attempt to provide scalability by replicating the contents of the
database on multiple machines, such that more client requests can be processed. A design choice
made when using replication is whether each machine stores a fully replicated copy of the database,
or a small part [9]. When using full replication read requests from client applications will be fast,
as they are spread among the available machines. Write requests however, are much more difficult
to scale with a fully replicated database, as for each write performed by a client, the replicated
copy on all machines need to be updated. When only small parts of the relational database is
replicated and distributed among the machines, it is possible that due to network or hardware
failures, the replicated parts of the database become inconsistent.

Recent work towards providing scalability to databases includes the Ganymed [17] project. Ganymed
achieves both scalability and consistency by using a special transaction scheduling algorithm called
Replicated Snapshot Isolation with Primary Copy (RSI-PC). With RSI-PC, Ganymed proposes to
separate read-only and update transactions to the database, and send them to different replicas.
Read transactions are distributed among any of the available replicas. Write transactions are send
to a master replica only, instead of all active machines. The RSI-PC scheduling algorithm ensures
that temporary inconsistencies between the replicas are hidden from client applications to achieve
consistency, and synchronizes the master replica with all other replicas appropriately. Examples
of relational databases that use such scheduling algorithm include Oracle and PostgreSQL. Oracle
11g currently supports up to 100 nodes [18]. To implement a scalable database on XtreemOS we
need a different design, as real grids may consist of thousands of nodes or more.

10



Chapter3
Background

Contents
3.1 XtreemOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Application Execution Management . . . . . . . . . . . . . . . . . . . . 12

3.1.2 Infrastructure for Highly-available and Scalable Services . . . . . . . . . 13

3.1.3 Virtual Organization Management . . . . . . . . . . . . . . . . . . . . . 13

3.1.4 Security Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.5 Data Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.6 XtreemOS API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 XtreemFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Metadata and Replication Catalog . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Object Storage Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.3 Directory Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.4 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Scalable distributed databases . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.1 Google BigTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3.2 Amazon SimpleDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3.3 Apache HBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

In this chapter we describe various systems which form the context of our project. First we
introduce XtreemOS and several of it’s components. Then we describe the XtreemFS distributed
filesystem servers and client, and finally we discuss scalable distributed databases.

11



3.1. XTREEMOS CHAPTER 3. BACKGROUND

3.1 XtreemOS

In order to perform computation of increasingly large technical or scientific problems, (super)com-
puters must be able to process and compute more data, and faster. One way for companies to
tackle this problem is to simply buy a bigger supercomputer, which can financially be very expen-
sive. Another solution involves combining a group of smaller, less expensive computers (nodes), to
perform collaborative computation. Nodes may sometimes be homogeneous: they have the same
hardware, operating system, and are on the same (local) network. This is called a computer clus-
ter [19]. In contrast to clusters, grids [20] can consist of nodes with different hardware, operating
systems, and may be geographically distributed, connected via a wide area network such as the
internet.

XtreemOS is an open source project funded by the European Commission, whichs aims to develop
a grid operating system based on Mandriva Linux. It enables users to create Virtual Organizations
[21] using a modified Linux kernel. This means that users can share, select and aggregate a wide
variaty of geographically distributed resources, such as clusters, storage systems, supercomputers,
mobile devices and more. Once formed, a Virtual Organization can be used to perform high de-
manding computations. For applications, XtreemOS is entirely transparent. Programs can run
on a XtreemOS Grid using POSIX [22] or SAGA [23] interfaces, without any modifications.

Figure 3.1: Overview of the XtreemOS architecture.

The architecture of XtreemOS is logically divided in two layers: the G-layer and the F-layer.
The lowest F-layer contains Linux extensions, to provide virtual organization support within the
operating system itself. It contains software support for mapping of virtual organization identities
to local user identities, a checkpointing kernel module [24] to save and restart submitted jobs
and LinuxSSI cluster integration. The G-layer has all XtreemOS services to enable connectivity
between nodes, execution management and a shared distributed filesystem.

3.1.1 Application Execution Management

One of the most important functionalities in XtreemOS is the ability to run programs on the
available resource nodes in the grid. Users can do this in XtreemOS by submitting a job which
describes what program to run, optional arguments and environment variables to pass to the
program and how much resources it requires such as processor power and memory. Application
Execution Management is the software package in XtreemOS which supports submitting, schedul-
ing and running jobs. Jobs submitted to the Application Execution Management service must be
written in the Job Submission Description Language [25].

12



CHAPTER 3. BACKGROUND 3.1. XTREEMOS

3.1.2 Infrastructure for Highly-available and Scalable Services

In order to start executing a program on a resource node which fits the job description best, AEM
needs a service to select candidate resource nodes. In XtreemOS there are two services which
together provide this functionality. The first is the Resource Selection Service and is responsible to
select resources based on static attributes, like the operating system, architecture, processor power
and total memory. After the RSS has selected resources, another service called the Application
Discovery Service further selects nodes using dynamic attributes such as the free memory available,
network traffic and current processor load. RSS and ADS together form the Scalable Resource
Discovery System.

3.1.3 Virtual Organization Management

Users and resource nodes can become member of a Virtual Organization in XtreemOS using the
VOLifeCycle web application or command-line utilities. Creating, modifying, removing, joining
and leaving Virtual Organizations is supported by VOLifeCycle for registered users.

3.1.4 Security Management

To prevent unauthorized individuals to run programs on the grid or access XtreemFS files,
XtreemOS uses certificates to authenticate and authorize users. For each Virtual Organization
users use a X509 certificate [26] when using services on resource nodes provided by XtreemOS. The
Credential Distribution Authority is responsible for the creation new security certificates for users,
and the Resource Certification Authority generates certificates to authenticate resource nodes.

3.1.5 Data Management

Most frequently a submitted job will output results after it has completed calculations. This
requires a shared filesystem on all XtreemOS resource nodes. In XtreemOS jobs can read and
write data to the XtreemFS distributed filesystem which is available on all resource nodes in the
XtreemOS grid.

3.1.6 XtreemOS API

Applications submitted to the XtreemOS Application Execution Management service are able to
run unmodified using the standard POSIX system interface. Grid applications in XtreemOS can
either submit jobs directly to the Application Execution Service or use the SAGA [23] API. SAGA
standardizes the interface to the grid, which allows SAGA applications to run under different grids
transparently.

Figure 3.2: Virtual Organizations allows sharing resources between organizations.

13



3.2. XTREEMFS CHAPTER 3. BACKGROUND

3.2 XtreemFS

XtreemFS is a distributed filesystem, which means it is capable of storing files on several comput-
ers connected by a network. Files can be striped into smaller pieces and distributed on multiple
servers. This enables XtreemFS clients to access the parts in parallel for optimal performance.
In XtreemFS users can create different volumes for storing data, for example a volume to mount
their home directory. XtreemFS has been especially designed for wide area networks such as the
Internet, allowing users to use XtreemFS volumes from any location.

The XtreemFS design modelled after the object-based filesystem architecture [27]. The term ob-
ject comes from the fact that it splits files into smaller fixed-size parts called objects. In contrast
to block-based file systems, the size of such an object can vary from file to file. Objects are stored
on storage servers while the metadata of files such as the filename, size and modification time is
stored separately on metadata servers. The XtreemFS services are implemented in the Java pro-
gramming language communicate internally using the JavaScript Object Notation [28] over HTTP.

Figure 3.3: Overview of the XtreemFS architecture.

3.2.1 Metadata and Replication Catalog

Metadata of files in XtreemFS is stored on the Metadata and Replication Catalog (MRC). File
information such as the name, size and owner are kept in the MRC. There can be multiple instances
of the MRC running on different servers across the network. The MRC is also responsible for proper
authentication and authorization of users for access to files in XtreemFS, which can be done using
client provided UNIX identities or in the form of security certificates.

3.2.2 Object Storage Device

XtreemFS uses a technique called striping to split file content into small objects. Striped objects
are distributed among Object Storage Device (OSD) instances available on the network. This
allows XtreemFS clients to read and write objects in parallel to increase the overal bandwidth.
XtreemFS supports different striping policies which can be specified on a per-file basis.

3.2.3 Directory Service

In XtreemFS the Directory Service is used as a central registry for all services in XtreemFS. MRC
instances use the Directory Service to discover OSD servers and users point their XtreemFS client
to a Directory Service when to want to mount an XtreemFS volume.

14



CHAPTER 3. BACKGROUND 3.2. XTREEMFS

3.2.4 Client

The XtreemFS distribution comes with several client applications for accessing the XtreemFS
services, which require a recent Linux 2.6.x kernel, OpenSSL 0.9.8 and Filesystem In UserSpace
[29] (FUSE) support. With FUSE programmers can develop their own filesystems which will
run as a regular user process interacting with the Linux kernel. Standard POSIX functions are
translated into FUSE messages by the Linux kernel and send to the filesystem process. Figure 3.4
illustrates how an example “Program A” accesses XtreemFS with the FUSE filesystem loaded in
Linux. In the current XtreemFS 1.0 release the following client applications are supported:

• xtfs lsvol Lists available XtreemFS volumes given the address of an active MRC service.
Users may use this command to discover what volumes are available.

• xtfs mkvol Creates a new XtreemFS volume, also taking the location of a MRC service
as input. It is possible to specify the default striping policies and access controls for the
volume.

• xtfs rmvol Removes a XtreemFS volume including all files from the given MRC service. Like
all other client applications, users may input a security certificate to authenticate themselves.

• xtfs mount Mounts a XtreemFS volume on the local filesystem. By mounting an XtreemFS
volume in a directory on the local filesystem, users can read, write and delete their files on
the XtreemFS volume the same way as they would manage their files on the local filesystem.

• xtfs umount Unmounts a XtreemFS volume on the local filesystem. After mounting a
XtreemFS volume in a directory on the local filesystem, it can be unmounted to close the
connection with the XtreemFS volume.

• xtfs stat Displays information about a file on XtreemFS. Is shows standard POSIX file in-
formation like the filename, size, modification timestamp and ownership, and also XtreemFS
specific attributes such as striping information and the location of each object inside the file.

• xtfs cleanup Performs consistency checks on an OSD service. This program verifies that
each object stored on an OSD has a corresponding entry on a MRC service, and may be
removed otherwise.

• xtfs send Invokes remote procedure calls on an XtreemFS service. Users can use this
program to debug problems in running XtreemFS services by inspecting the output returned
by this program.

• xtfs mrcdbtool Dumps and restores XtreemFS MRC databases. Users can backup and
restore the database of running XtreemFS MRC instances in XML format.

Figure 3.4: The XtreemFS client uses FUSE to mount volumes on the local filesystem.

15



3.3. SCALABLE DISTRIBUTED DATABASES CHAPTER 3. BACKGROUND

3.3 Scalable distributed databases

3.3.1 Google BigTable

Millions of users across the globe use the services offered by Google each day, such as Google Search,
Google Earth and Google Finance. In order to provide the huge storage capacity and performance
demands required by these applications, Google has designed and implemented BigTable [10].
Google describes BigTable as a distributed storage system for managing structured data, which
presents applications a sparse, distributed, persistent, multi-dimensional, sorted map. A map is
an abstract datatype containing a collection of keys. Each key in a map is associated with one
value. In BigTable the map is indexed by a row key, column key, and a timestamp, allowing
applications to access BigTable using simple key-value translation. Each value in the BigTable
map is an uninterpreted array of bytes.

Figure 3.5: An example BigTable which stores Web pages (adapted from [1])

The BigTable map consists of typically large number of rows and columns which may have large
empty spaces, therefore BigTable is called a sparse map. Rows inside the BigTable map are divided
into distinct ranges of rows called tablets. Each tablet may be stored on multiple tablet servers
on the network, hence BigTable is a distributed map. This property enables BigTable to scale
to thousands of servers, as each tablet server is responsible for a small range of rows in the map.
BigTable persists written data by user applications, meaning the written information will remain
stored in BigTable even after the user program terminates. Whenever a user application writes a
new value for a given row and column key, BigTable keeps the old value to maintain the history of
the record. Applications may request the latest or an older value by specifying a different times-
tamp when accessing the value, which is the reason why BigTable is called a multi-dimensional
map. Another property of BigTable is that it is sorted lexicographically by row keys. Client
applications can exploit this to keep the number of tablet server needed for communication low.
An example Google uses in their paper to illustrate this is a BigTable for storing webpages. The
hostname components of each URL from a webpage fetched by the webcrawler are reversed and
the result is used as the row key, for example com.starwars.www/index.html. Because BigTable is
a sorted map, webpages from the same domain are grouped together.

In BigTable column keys are grouped into sets called column families. Data inside a column
family is ideally of the same data type for efficient data compression. Column families must be
created in BigTable before any data can be stored under a column key in that family. An exam-
ple from the Google BigTable paper is a column family anchor, to contain all anchors linking to
external webpages. The column key in this example is the URL to the referring website and the
value is the link text. BigTable uses column families also as the basic unit of access control. Some
applications may be allowed to write to a certain set of column families, while others can only
read or none.

16



CHAPTER 3. BACKGROUND 3.3. SCALABLE DISTRIBUTED DATABASES

Before a client application can access BigTable, it first needs to know the location of the tablet
servers needed to complete the request. To maintain scalability, BigTable has a three-level tablet
hierarchy which are used by clients to find the correct tablet servers they need. The first level is
the root tablet and contains the location of all tablets of the METADATA table. The METADATA
table in turn describes the location of all known tablets defined by client applications using their
row key.

Figure 3.6: Tablet location hierarchy used in BigTable (adapted from [1])

Google uses the Google File System [30] (GFS) to provide distributed storage to BigTable for
storing data and log files. The GFS is designed for clusters of hundreds to thousands of cheap ma-
chines connected by a network. Just like XtreemFS, GFS is an object-based filesystem, meaning
that it splits files in fixed-size parts. In Google terminology these parts are called chunks. With
GFS, Google assumes that system component failure may happen at any time, at any machine.
Therefore chunks are stored on multiple machines to ensure data integrity in the case a machine
becomes unavailable. As with XtreemFS, chunks may be accessed in parallel by clients to achieve
greater performance.

Since april 2008 Google offers customers access to BigTable via the Google App Engine. Google
App Engine allows customers to run their web applications on Google’s infrastructure, which can
be written in Java or Python. Google App Engine is free of costs for applications up to 500MB
of storage, with CPU power supporting about 5 million page views a month. Only if a customer
enables billing in Google App Engine, the limits are released and they will pay only for the re-
sources they use. The runtime environments offered by Google App Engine ensures that a web
applications runs in a limited sandboxed environment to prevent disturbing or affecting other
programs running on the system. Programs running on Google App Engine may use BigTable to
read and write data efficiently.

17



3.3. SCALABLE DISTRIBUTED DATABASES CHAPTER 3. BACKGROUND

3.3.2 Amazon SimpleDB

Amazon has played a critical role in the development of cloud computing by providing cloud com-
puting services to customers on the internet. The Amazon Elastic Computing Cloud (EC2) enables
user run applications on the operating system of their choice on the cloud computing infrastructure
of Amazon. EC2 can do this because it offers a true 32 or 64-bit virtual environment to users.
By creating and uploading an Amazon Machine Image to EC2, users can use their own libraries,
applications, data, configuration and operating systems on virtual instances running on EC2. In
EC2 users are able to start any number of virtual instances by using an online web interface.

EC2 offers complete control to virtual instances for users. They can be booted remotely us-
ing the webservice API. While booting users can access the console output of the virtual instances
just like a physical machine. There are several virtual instance types available for users to choose
from, including standard instance types (small, large and extra large) and High-CPU instances
(High-CPU medium, High-CPU extra large). Smaller instance types have less virtual cores, sys-
tem memory, and storage capacity than larger instances. For example, a standard small instance
has 1.7 GB memory, 1 EC2 compute unit and 160 GB storage on a 32-bit platform, while the
extra large standard instance has 15 GB memory, 8 EC2 compute units and 1690 GB storage on a
64-bit platform. Virtual instances can be associated with an Elastic IP address in EC2. An elastic
IP address is a static endpoint which can be assigned to and released from virtual instances at
any time. EC2 supports placing virtual instances on multiple geographically distributed locations
called Availability Zones in Amazon terms. Customers can benefit by choosing nearby Availability
Zones for low latency connections and launching more virtual instances abroad to protect appli-
cations from failure at a particular location.

The services and resource offered by EC2 are rented by customers on a pay-per-use basis. Cus-
tomers pay Amazon only for the amount of resources they have actually used. The eventual price
paid to Amazon is based on the number of virtual instances used, the type of virtual instances
and how many hours they were used. Amazon has defined a price list containing to be paid per
hour, per virtual instance type. Optionally customers may choose to reserve instances at the cost
of a one-time payment. Customers can define the duration terms of their reservation and are then
billed with a significant discount on the per-hour usage rates during that period.

Besides EC2 Amazon offers a scalable storage solution called Amazon Scalable Storage Service
(S3) for web applications to their customers. With S3 users can read, write and delete objects
ranging from 1 byte to 5 gigabyte, using REST or SOAP programming interfaces. Like EC2 cus-
tomers only pay for the storage they use from Amazon. Prices are based on the total used storage
capacity in gigabytes, the number of gigabytes transferred over the internet and the number of S3
API requests used.

On the same infrastructure on which Amazon hosts EC2 and S3, Amazon provides Amazon
SimpleDB. SimpleDB is a highly scalable distributed database similar to Google BigTable and
works closely together with EC2 and S3 in the Amazon cloud computing infrastructure. Collec-
tively EC2, S3 and SimpleDB provide a platform for data storage, processing, and querying to
customers on a pay-per-use basis. SimpleDB is accessible for users with Java, C#, Perl, PHP
and VB.NET programming interfaces using simple functions for reading, writing and querying
data stored in SimpleDB. Amazon charges customers based on the machine hours used to process
requests, the total data in gigabytes transferred over the internet, and the total storage capacity
used in gigabytes.

18



CHAPTER 3. BACKGROUND 3.3. SCALABLE DISTRIBUTED DATABASES

3.3.3 Apache HBase

The Apache Software Foundation (ASF) is a non-profit organization in the United States of Amer-
ica. It was founded in 1999 by a group which called themselves the “Apache Group”. The group
had chosen the name “Apache” in respect to the Native America Indian tribe of Apache. The
Apaches live in Northern America since around the 10th century and proved to be fierce warriors
during battles fought against the Spaniards and Mexicans. Between 1995 and 1999 the Apache
Group wrote the Apache HTTP server, which became and currently is leader of the market. As
a computer joke the name Apache is sometimes interpreted as “a patchy server”, meaning the
Apache HTTP server was made from a series of patches, but this is not the origin of the name.

Figure 3.7: The purple and red colored feather is the logo the Apache Software Foundation

The Apache Software Foundation develops Hadoop [31], an open source reliable, scalable, dis-
tributed computing environment written in Java. With Hadoop users can run applications to pro-
cess large amounts of data, on clusters of typically thousands of commodity servers. Applications
use the Hadoop MapReduce [32] implementation when running on an Hadoop compute cluster.
MapReduce divides the work to be done by applications into small parts, and executes those on
Hadoop. The Hadoop project is consists of several subprojects, including Hadoop Core for pro-
viding MapReduce functionality and the Hadoop Distributed FileSystem (HDFS), the Zookeeper
coordination system, and Apache HBase as the scalable distributed database for Hadoop.

Just like BigTable provides users a distributed scalable database on top of the Google filesys-
tem, HBase supports BigTable capabilities on an Hadoop cluster using the HDFS distributed
filesystem, as described on the HBase project webpage [13]. HBase initially started as a contri-
bution [33] to the Hadoop project, by Michael Stack at a company called Powerset. It was first
publicly released in October 2007, included in Hadoop 0.15.0, and since that time it has outgrown
into a separate subproject of Hadoop. Like Hadoop, HBase is written in Java and runs on most
POSIX compatible operating systems. The HBase architecture is based on the BigTable paper [1]
published by Google, and therefore also presents client applications with a map. In HBase ter-
minology, tables are called regions, and tablet servers are called region servers, but it’s concepts
remain the same. Although HBase already has several public releases available on the internet, it
is currently still an experimental system compared to BigTable, and is under active development
by the HBase community. For instance, HBase does not yet have authentication or access control
mechanisms implemented.

There are several client programming interfaces available for developing applications which can
interact with HBase. HBase supports the default Java programming interface, and also Thrift [34]
and REST API’s. Thrift is a framework for transparent communications between programs writ-
ten in different programming languages. The HBase distribution comes with Facebook’s Thrift
implementation, which allows HBase to communicate with client programs written in C++, Java,
Python, PHP, Ruby, Erlang, Perl, Haskell, C#, Cocoa, Smalltalk and OCaml. REST offers a
method to transfer information between applications over the HTTP protocol. The HBase REST
interface can be accessed with HTTP requests, in combination with XML tags or JSON.

19



Chapter4
Project Plan

Contents
4.1 Project goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Deliverables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.1 Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3.2 Members . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.6 Risk analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.7 Quality assurance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.8 Costs and gains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

The following sections describe the initial plan of our project. It gives a description of the project
as we originally defined and planned it at the very beginning of our project. We present the project
goal, deliverables, organization, activities, planning, risc analysis, quality assurance and cost and
gain analysis.

20



CHAPTER 4. PROJECT PLAN 4.1. PROJECT GOAL

4.1 Project goal

The goal of this project is to implement a large scale distributed database for XtreemOS. We will
use an existing open source implementation, such as Apache HBase, and modify it to cooperate
with XtreemOS, using XtreemFS for storage. Optionally, if enough time remaining, investigate
if it is possible to modify the implementation such that it efficiently uses XtreemFS’ internal
organization, apart from the normal POSIX interface, to further optimize performance.

4.2 Deliverables

Deliverable Priority
Apache HBase implementation on XtreemOS (using HDFS) MUST HAVE
Apache HBase implementation on XtreemOS (using XtreemFS) SHOULD HAVE
Improved HBase performance (using XtreemFS’ capabilities) COULD HAVE
Packaging scripts, for easy installation on XtreemOS SHOULD HAVE
Detailed technical documentation SHOULD HAVE
Presentation and demonstration of the system MUST HAVE
Project thesis MUST HAVE

4.3 Organization

4.3.1 Location

The project will take place on the Vrije Universiteit Amsterdam. The Vrije Universiteit Amster-
dam was founded on 20 October 1880 by Abraham Kuyper in Amsterdam as a private orthodox
protestant university, and initially consisted of three faculties: Theology, Literature and Law [35].
Abraham Kuyper was born in 1837, the son of a preacher. Kuyper was president of the Nether-
lands during 1901 until 1905, professor theology at the VU and also the first rectorus magnifici,
which is the university president. Since it’s foundation the VU was financed by donations from
volunteers, which kept the VU growing from a small university to mid-size during the sixties and
eventually large university in the seventies.

The word Vrije means freedom in Dutch and emphasizes the independence of the university
from the government and church. Therefore the Vereniging VU-Windesheim manages the organi-
zation of the VU and also for the Windesheim University of applied sciences. Although freedom
is important for the VU, the education itself at the VU is not free of costs. Dutch students pay a
government determined tuition of about 1600 euro’s a year, which is the same as other accredited
universities in the Netherlands.

The logo of the VU is a griffin, which also symbolizes the values of the VU. It has the body
of a lion and the wings of an eagle, and originated from Ancient Greece, Rome and is also the
history of Christianity. On the webpage of the VU [36], the griffin is described as:

“The griffin represents the values embodied by VU University Amsterdam. The spread-
ing wings represent the quest for knowledge, in complete freedom. The possession of
knowledge brings with it responsibilities and these have to be addressed conscientiously.
The griffin’s feet, planted firmly on the ground, represent VU’s commitment to the well-
being of society as a whole. And like the griffin, VU University Amsterdam cannot be
summed up in a few words.”

21



4.3. ORGANIZATION CHAPTER 4. PROJECT PLAN

Figure 4.1: The logo of the VU is a blue griffin

The current campus of the VU is located at the Boelelaan 1105 in south Amsterdam. There are
about 20,000 students, 2,200 faculty members and researchers among which 300 professors. Since
it’s foundation, the number of faculties on the VU has increased from three to twelve, including
Science, Arts, Dentistry, Earth and Life Sciences, Economics and Business Administration, Hu-
man Movement Sciences, Philosophy, Phychology and Education, Social Sciences and the original
Law, Literature and Theology faculties. Also see appendix A for a complete organogram of the VU.

In this project all activities will be taken place at the faculty of Sciences at the VU Amster-
dam, including research, systems development, deployment and documentation. The VU also
supplies the required hardware for performing experiments and development.

22



CHAPTER 4. PROJECT PLAN 4.3. ORGANIZATION

4.3.2 Members

The project consists of several members which are listed below. As XtreemOS is an international
project, it includes people from the Vrije Universiteit but also from abroad. The list below only
contains those people from XtreemOS who have played a role in the project.

Niek Linnenbank <nieklinnenbank@gmail.com>
Student

Responsible for performing research, building implementations, documenting and presenting all
results during the project. Available from 09:00 - 17:00, Monday until Friday, either by e-mail or
at the Vrije Universiteit Amsterdam.

Guillaume Pierre <gpierre@cs.vu.nl>
Project Supervisor

Guides and supervises Niek, makes decisions regarding all implementations, and is available for
answering questions by email during the project. Every one or two weeks Niek and Guillaume
have an appointment for project status.

Leo van Moergestel <leo.vanmoergestel@hu.nl>
Examiner

As the representative of the Hogeschool Utrecht, Leo will visit the Vrije Universiteit Amster-
dam at least 2 times to examine the status of the project. Leo is also end-responsible for the final
grade of the project.

Corina Stratan <cstratan@cs.vu.nl>
XtreemOS developer

Corina works at the Vrije Universiteit Amsterdam on the Resource Selection Service for the
XtreemOS project, and is system administrator of the XtreemOS testbed at the Vrije Univer-
siteit Amsterdam. She provides supports for users of the testbed and can review Niek’s work.

Toni Cortes <toni.cortes@bsc.es>
Ramon Nou <rnou@ac.upc.edu>
Jacobo Giralt <jacobo.giralt@bsc.es>
XtreemOS developers

Toni, Ramon and Jacobo are developing the Application Execution Management service in XtreemOS.
They are available for questions and reporting problems concerning AEM in this project.

Zhou Wei <zhouw@few.vu.nl>
HBase specialist

As an HBase specialist, Zhou is available by email during the project, for any technical ques-
tions about Apache HBase.

23



4.4. ACTIVITIES CHAPTER 4. PROJECT PLAN

4.4 Activities

• Gather all required documents and software packages.

• Understand XtreemFS, XtreemOS, and Apache HBase internals.

• Run Apache HBase on top of XtreemOS (using Apache’s HDFS).

• Investigate how to replace HDFS with XtreemFS on Apache HBase.

• Implement Apache HBase on XtreemOS, using XtreemFS as storage.

• Optimize performance by exploiting XtreemFS’ internal organization.

• Debugging, testing and packaging.

• Technical documentation.

• Write the project thesis.

4.5 Planning

Figure 4.2: Outline of planned activities in the project

4.6 Risk analysis

The following is a list of possible problems which may or may not occur during the project. For
each situation, a solution is provided in order to resolve or (even better) avoid it:

Situation Solution
There are not enough XtreemOS nodes avail-
able to do experiments on

Reserve nodes early

Any of the project members is (too) busy to
schedule an appointment

Plan the appointment earlier

XtreemOS, XtreemFS or HBase contains bugs Report the bugs at the appropriate mailing
list

Hardware failures of any of the development
machines

Make backups often on separate storage

HBase does not support a feature required by
XtreemOS

Ask HBase developers for help, or implement
it ourselves

24



CHAPTER 4. PROJECT PLAN 4.7. QUALITY ASSURANCE

4.7 Quality assurance

In order to assure quality of all the project deliverables, Guillaume, Zhou and XtreemOS devel-
opers can review each deliverable, either remotely via the internet, or at the Vrije Universiteit
Amsterdam. For the quality of each deliverable, it is important that it is reviewed by a person
which has sufficient technical knowledge about the implementation of the deliverable.

4.8 Costs and gains

The following is a list of costs and gains for this project:

Hardware must be available, running XtreemOS. COST
Some time and energy of each project member. COST
Distributed scalable database implementation on XtreemOS. GAIN
Experience and knowledge of distributed, scalable databases. GAIN
Bugreports (and possible fixes) in any software used. GAIN

25



Chapter5
Implementation

Contents
5.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 HBase requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.2 Java Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.3 Shared filesystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.4 Remote execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.1.5 Time synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.6 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.7 Automating administration . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.2 User Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 hbase-xos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.2 hbase-xos-master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.3 hbase-xos-region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.4 hbase-xos-setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 RPM package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.2 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.4.1 Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4.2 Sequential Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.4.3 Random Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4.4 Random Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4.5 Scans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

In this section we describe the current implementation of HBase on XtreemOS. First we present
the design decisions made for the implementation, and describe the programs we wrote. Then we
describe how we deployed our implementation of HBase on XtreemOS and finally we present the
performance results we measured.

26



CHAPTER 5. IMPLEMENTATION 5.1. DESIGN

5.1 Design

5.1.1 HBase requirements

As described in section 3.3.2, HBase is a Java program designed to run on many cheap Linux servers
using a Java Virtual Machine of at minimum version 1.6.x. In a default HBase installation, each
server requires the following:

• Java 1.6.x, preferably the Sun JVM although HBase should in theory work with other
compatible JVM’s.

• Hadoop 0.19.x, required in a default installation for providing the Hadoop Distributed
FileSystem to HBase servers.

• OpenSSH, HBase needs the ssh command-line client to remotely start and stop the HBase
master and region servers.

• NTP, the system time on each node in an HBase cluster is assumed to be in basic alignment.
A Network Time Protocol client may be used to synchronize time on the nodes.

• Configuration, at minimum each HBase region server needs to know the location of the
HBase master server, and the path to the shared filesystem between all HBase servers. This
can be configured using the hbase.master and hbase.root configuration keys respectively.
Additionally, in a default HBase setup the location of all region and master servers are
stored in a textfile to automate SSH commands for starting and stopping HBase.

5.1.2 Java Virtual Machine

To provide a Java Virtual Machine of version 1.6.x or greater, we use OpenJDK in XtreemOS.
OpenJDK is the open source edition of the Sun Java Virtual Machine. OpenJDK 1.7.0 is included
in the latest current release of XtreemOS, version 1.1, and will also be included in the upcoming
XtreemOS 2.0 release planned for June 2009.

5.1.3 Shared filesystem

In order to successfully run a HBase installation, each HBase region server needs to have access to
a filesystem which is shared among all HBase region servers. HBase used various built-in filesystem
modules provided by Hadoop which can be configured as the shared filesystem using the hbase.root
configuration key, including the default HDFS, FTP, Amazon’s S3 and the local filesystem. Each
supported filesystem can be configured using the corresponding URL in the hbase.root configura-
tion key, for example to use HDFS one would configure HBase as illustrated in figure 5.1.

<property>
<name>hbase.rootdir</name>
<value>hdfs://my.host.com:9000/hbase</value>
<description>The directory shared by region servers.
Should be fully-qualified to include the filesystem to use.
E.g: hdfs://NAMENODE_SERVER:PORT/HBASE_ROOTDIR

</description>
</property>

Figure 5.1: Example HBase configuration when using HDFS as shared filesystem

27



5.1. DESIGN CHAPTER 5. IMPLEMENTATION

(a) Initially reserve all
nodes.

(b) DIXI schedules the pro-
gram on one node from the
reservation. Now we re-
serve all remaining nodes.

(c) Keep reserving and
submitting until enough
programs running.

Figure 5.2: Scheduling jobs in DIXI on different resource nodes using reservations

To make using HBase easier on XtreemOS, we should replace the default HDFS with XtreemFS to
provide a shared storage among HBase region nodes, as XtreemFS is already be available as shared
storage among all XtreemOS resource nodes. As described in section 3.2.3, the XtreemFS client
is built on top of the FUSE kernel module. This allows applications, including HBase running in
the OpenJDK Java Virtual Machine, to access XtreemFS with regular POSIX functions on the
local filesystem. Fortunately, HBase supports accessing the local filesystem using the file:// URL
in the hbase.rootdir configuration key, which we have used to point to the user’s XtreemFS home
directory. This way we where able to run HBase region servers using XtreemFS as shared storage.
Therefore, to replace the Hadoop Distributed FileSystem (HDFS) with XtreemFS to provide a
shared storage among all HBase region nodes, we did not need to modify the HBase source code.

5.1.4 Remote execution

In a regular HBase installation, the bin/start-hbase.sh and bin/stop-hbase.sh scripts are used to
start and stop HBase using remote SSH commands, respectively. The location of each HBase
region is written in the configuration file conf/regionserver, which is read by these scripts in order
to connect to the right SSH daemon. Although XtreemOS supports executing SSH commands
using XtreemOS certificates as authentication method, it is much harder in XtreemOS as a grid to
maintain such a list, as resource nodes may enter and leave the grid at any time. The DIstributed
XtreemOS Infrastructure (DIXI) was especially designed to execute programs on the XtreemOS
grid, using the Application Execution Management (AEM) services as described in section 3.1.
The DIXI Java API enables submission and monitoring of jobs, using JSDL [25] to describe jobs.

For running the HBase region servers on XtreemOS it is important that DIXI schedules them
on different resource nodes, as otherwise there would be no performance gains if multiple HBase
region servers are launched multiple times on the same machine(s), or worse it could overload
them. Initially we hoped DIXI would be able to provide us the ability to submit one JSDL job,
which would start multiple HBase region servers on multiple, unique resources nodes. Currently
DIXI is able to process jobs which start multiple processes, however it cannot guarantee yet they
are ran on different resource nodes. However, the latest DIXI version supports reservation of
resource nodes. By reserving XtreemOS resource nodes, an application can supply DIXI with a
number of machines of interest, and the time at which the application wants to use them. The
application is then able to run a program on any of the reserved machines. It is then possible to
only reserve resource nodes, which the application knows it has not yet started an instance of it’s
program, as illustrated in figure 5.2. Our current HBase implementation uses this method to run
HBase on different XtreemOS resource nodes.

28



CHAPTER 5. IMPLEMENTATION 5.1. DESIGN

5.1.5 Time synchronization

HBase region servers are expected to have their system time synchronized to the system time of
the HBase master server. On the HBase overview page [37] the developers suggest to install a
Network Time Protocol client on each machine to synchronize their system times with an NTP
server on the internet. In a grid environment such as XtreemOS it may not be guaranteed that
each node has it’s system time synchronized, and that all nodes reside in the same timezone. Our
current implementation of HBase on XtreemOS does not deal with this problem and assumes that
system times are correctly synchronized.

5.1.6 Configuration

HBase is configured using two XML files, conf/hbase-default.xml containing the default configura-
tion and conf/hbase-site for user configuration. Configuration for HBase region servers is expected
to be in a known location, and should be available for each HBase server. In a grid environment
such as XtreemOS, no assumptions can be made on the contents of the local filesystem in each
resource node, such as the location and access permissions of configuration files, as the resource
nodes which HBase is scheduled on may change each time it is restarted with a new DIXI job.
Therefore we cannot place HBase configuration on the local filesystem of XtreemOS resource nodes.
Fortunately the XtreemFS user home directory provides a shared storage on which guaranteed to
be available on all resource nodes. In our implementation we use XtreemFS to store the HBase
configuration for both the HBase master and region servers. An advantage is that the user can
configure all HBase servers using one configuration file, instead of configuring each region server
individually as in the default HBase distribution. Administrators of XtreemOS resource nodes can
override the HBase user configuration when appropriate. The conf/hbase-default.xml file on the
XtreemFS is a symbolic link to the conf/hbase-default.xml configuration file in the default HBase
installation directory, which is /usr/share/hbase, to allow configuration overrides per XtreemOS
resource node. The conf/hbase-env.sh file on the user’s XtreemFS home directory, containing
HBase environment variables, also reads the conf/hbase-env.sh if available to also allow overrides
of environment variables. For example, HBase can be configured to consume a maximum amount
of system memory with the HBASE HEAPSIZE environment variable in the conf/hbase-env.sh
file. Administrators of XtreemOS resource nodes can set this value to an acceptable level based
on the amount of system memory available on the resource node.

5.1.7 Automating administration

To automate the process of submitting DIXI jobs to start and stop HBase on XtreemOS, we
have written four python scripts. Python was chosen in preference to the Bash Shell, because
our implementation needs to be able modify the HBase XML configuration files, especially the
hbase.master configuration key. This configuration key contains the location of the currently
active HBase master and needs to be overwritten each time the HBase master is started on the
XtreemOS grid, as the resource node chosen by DIXI to run the HBase master may change. Shell
scripts do not support an easy way to modify XML files. The Java programming language would
be a good candidate, as the DIXI programming interface is written in Java aswell. However
creating symbolic links in Java requires on to write a Java Native Interface module as it is not
supported in the standard Java API. JNI modules are architecture specific, and this means we
would have to create a different HBase package for each supported XtreemOS architecture, which
should be avoided if possible. Moreover, code written in Python is often shorter, easier to read
than Java programs, and does not require any compilation step. This avoids placing DIXI Java
Archive files on the XtreemOS Subversion repository for HBase, which would otherwise become
outdated in time. Figure 5.3 illustrates the interaction between the HBase python scripts, DIXI
and XtreemFS.

29



5.2. USER PROGRAMS CHAPTER 5. IMPLEMENTATION

5.2 User Programs

5.2.1 hbase-xos

Users can start and stop HBase on an XtreemOS grid using the hbase-xos program. It supports
the actions start, stop, restart, status and setup. setup must be used by the user to initialize HBase
configuration in the user’s XtreemFS home directory before starting HBase on XtreemOS. start,
stop and restart are used to start, stop and restart HBase on XtreemOS respectively. status may be
used to output the current status of HBase, whether it is running and optionally on which resource
nodes. hbase-xos optionally accepts command-line arguments to print out help information, enable
verbose debugging output, override the location of the HBase configuration and data, the number
of HBase regions to be started or stopped and the location of the XtreemOS user certificate to
authenticate to DIXI. Also see appendix C for the complete source code of hbase-xos version 0.0.1.

5.2.2 hbase-xos-master

When submitting a job to DIXI to start the HBase master, hbase-xos constructs a JSDL to start
the hbase-xos-master script. Once started on a XtreemOS resource node, it is responsible for
overwriting the hbase.master configuration variable with it’s own IP address. After updating the
HBase configuration, it invokes an HBase master server. Although possible, this script should not
be called directly by users.

5.2.3 hbase-xos-region

After hbase-xos has submitted a job to run the HBase master, it starts submitting JSDL jobs to run
the hbase-xos-region program. It is used to start an HBase region server and like hbase-xos-master
it should not be directly invoked by users.

5.2.4 hbase-xos-setup

To initialze the user’s HBase configuration, hbase-xos submits a job to run hbase-xos-setup on any
of the XtreemOS resource nodes. It creates initial XML files and points symbolic links to the
appropriate files. Per default hbase-xos-setup initializes HBase configuration in .hbase in the users
XtreemFS home directory.

Figure 5.3: hbase-xos interacts with DIXI to submit HBase jobs to XtreemOS.

30



CHAPTER 5. IMPLEMENTATION 5.3. DEPLOYMENT

5.3 Deployment

5.3.1 RPM package

To make management of system programs easier for administrators, computer scientists have in-
troduced the concept of a package manager. A package manager is a program which can configure,
install and uninstall programs inside an package archive on an operating system automatically.
Most modern package managers have the capability to keep track of installed programs and can
determine and resolve dependencies needed when installing new programs. For example, when a
system administrator decides to install program X on his machine the package manager fetches it’s
list of currently installed programs. The package manager knows that program X requires another
program Y to function properly and verifies that it is installed. If not it should either install
program Y aswell, or abort the whole installation process. Packages mostly have a special archive
format which the package manager can read, in order to read various types of metadata about a
package, such as it’s name, maintainer, dependencies, architecture, release date and description.
Package managers may install or update packages from several types of media, such as CD-ROM,
DVD, HTTP, FTP or RSYNC. Popular examples of package management systems used today are
the Debian Advanced Package Tool, Gentoo Portage, RPM and the FreeBSD ports collection.

To automate installation of programs on XtreemOS, the RPM Package Manager (RPM) was cho-
sen. RPM is a package management system originally developed by Redhat for Redhat Linux and
supports installation, configuration, uninstallation, verification, querying and updating software
packages. RPM is capable of checking dependencies between packages, but it cannot automati-
cally resolve them without help from an external program. Therefore several Linux distributions
including Mandriva have build small scripts on top of RPM which are able to automatically de-
tect and resolve dependencies by downloading the required packages from the internet and feeding
them as input to RPM. The Mandriva distribution comes with several URPM scripts that are able
configure remote RPM repositories, automatically download dependencies and update the entire
system to the latest Mandriva release from a remote RPM repository. As XtreemOS is based on
Mandriva, administrators can install pre-packaged RPM archives containing executable programs,
libraries, configuration and documentation using Mandriva’s URPM tools. For easy installation
of HBase we have created a RPM package “hbase” for the default HBase installation and a RPM
package “hbase-xos” containing the python scripts for managing HBase on XtreemOS.

5.3.2 Documentation

The hbase-xos program is documented in a regular UNIX manual page. UNIX is a computer
operating system designed by Ken Thompson and Dennis Ritchie at Bell Labs. The philosopy of
UNIX is to have many small programs that each can perform a simple task. For example, there are
programs to create and delete files, list directory contents and query the current time of day. In a
typical UNIX system the output of one program can be used as input for another program, thereby
combining several simple programs to perform more complex tasks. Ken Thompson and Dennis
Ritchie documented the parameters and workings of each program in a separate manual page. For
easy searching the manual pages are divided in several sections, including User Commands, System
Calls, Library Functions, Device and Special Files, File Formats and Conventions, Games, System
Administration tools and Daemons and Miscellanea. Many UNIX-like operating systems have
adopted the concept of manual pages to document their system, including Linux. On XtreemOS
users can simply type “man hbase-xos” to view the manual page of the hbase-xos program, which
describes it’s workings and syntax, or then may use the –help command-line argument to view a
brief description of it’s syntax. Also see appendix B for the complete hbase-xos manual page.

31



5.4. PERFORMANCE EVALUATION CHAPTER 5. IMPLEMENTATION

5.4 Performance Evaluation

In this section we present the performance of HBase on XtreemOS we measured. For the per-
formance tests we used three nodes from the VU testbed: node004, node005 and node007. Each
node had the following hardware and software installed:

• Processor: dual core 996.928 Mhz pentium III Coppermine

• Memory: 1 gigabyte RAM, 3 gigabyte swap

• Disk: 20 gigabyte Seagate ATA disk (ST320414A)

• Network: Intel Pro 100Mbit ethernet card

• XtreemOS: version 0.1

• Kernel: 2.6.20-0.5mdvsmp

• Java: OpenJDK 1.7.0

• HBase: version 0.19.2

• XtreemFS: version 1.0 RC1

• Hadoop: version 0.19.1

To put load on the HBase nodes we used the PerformanceEvaluation [38] program, which is in-
cluded in the official HBase distribution. The PerformanceEvaluation program supports 5 different
tests: random reads and writes, sequential reads and writes and scanning. It starts a given number
of HBase clients as a local process or a MapReduce job. A similar number of HBase region servers
should be started for each test, to spread the load generated by the clients among the available
HBase region servers. Each client reads or writes per default 1 gigabyte of data to the HBase
nodes. PerformanceEvaluation outputs the amount of time in milliseconds it took to complete
the transactions for all clients. Using this information we calculate the average, aggregate rows
processed by HBase per second with the following formulae:

Rows per Second = Total Rows / (Total Milliseconds / 1000)

For our tests we configured PerformanceEvaluation to read and write 512 megabyte of data, and
used 64 megabyte regions in HBase. We first ran each test with the the latest XtreemFS public
release available, version 1.0 RC1. Initially an older version of XtreemFS was installed on our
testbed, that is version 0.10.1. With XtreemFS 0.10.1, we failed to complete the PerformanceE-
valuation tests with more than one region server, as HBase reported ChecksumException errors on
region splits. Region splits are critical for these performance tests, as it enables HBase to split the
map in smaller pieces and distribute it among available region servers to spread the overall load.
For comparison with the default Hadoop Distributed FileSystem (HDFS) included in HBase, we
used version HDFS 0.19.1.

Each node ran an XtreemFS MRC and OSD service, or a HDFS Datanode respectively. Node004
ran the HBase master, and node007 the PerformanceEvaluation test, and all nodes ran an HBase
region server as required by the tests. The XtreemFS and HDFS services where restarted on each
test, to prevent caching to pollute the performance measurements. For the same reason all HBase
master and region servers where restarted before each test was ran. The results of each test are
plotted in the following sections. Also see appendix D for all tests and options supported by the
PerformanceEvaluation program.

32



CHAPTER 5. IMPLEMENTATION 5.4. PERFORMANCE EVALUATION

5.4.1 Sequential Read

Like BigTable, clients access HBase via a distributed map as described in section 3.3 and 3.3.2.
Clients may read or write values from HBase given a row key, column key and version timestamp.
Row keys are ordered lexicographically in HBase and are split in smaller ranges of rows called
regions in HBase terminology. The regions are distributed among region servers. The Sequential
Read test performs a single read operation on each row in HBase in lexicographical order, as illus-
trated in figure 5.5. Figure 5.4 displays the amount of 1000-byte rows read per second. When we
analyze these results, XtreemFS seems to be almost twice as fast as HDFS on Sequential Reads.
The straight increasing lines show that both filesystems scale very well.

 0

 100

 200

 300

 400

 500

 600

 1  2  3

R
ow

s 
pe

r 
S

ec
on

d

Region Servers

XtreemFS 1.0 RC1
HDFS 0.19.1

Figure 5.4: Performance results of the Sequential Read test

Figure 5.5: The Sequential Read test performs a read on each row key in order

33



5.4. PERFORMANCE EVALUATION CHAPTER 5. IMPLEMENTATION

5.4.2 Sequential Write

The Sequential Write performs the same test as the Sequential Read, except that it writes a new
value to each row instead of reading, as figure 5.7 illustrates. Our performance measurements of
Sequential Write are presented in figure 5.6. For Sequential Writes HDFS appears to be twice as
fast as XtreemFS. The rows per second barely increase when adding region servers with XtreemFS,
while HDFS shows an increasing line. However with three region servers, throughput seems to
decrease with HDFS.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1  2  3

R
ow

s 
pe

r 
S

ec
on

d

Region Servers

XtreemFS 1.0 RC1
HDFS 0.19.1

Figure 5.6: Performance results of the Sequential Write test

Figure 5.7: The Sequential Write test performs a write on each row key in order

34



CHAPTER 5. IMPLEMENTATION 5.4. PERFORMANCE EVALUATION

5.4.3 Random Read

In practice, HBase clients may not read or write row keys in order. Therefore the Random Read
test measures the performance of single read operations on all row keys in random order, as illus-
trated in figure 5.9. Figure 5.8 displays the performance results we measured on the VU testbed.
As in the Sequential Read test, these results show that XtreemFS is faster on Random Reads than
HDFS, and both scale very well when adding region servers.

 0

 100

 200

 300

 400

 500

 600

 1  2  3

R
ow

s 
pe

r 
S

ec
on

d

Region Servers

XtreemFS 1.0 RC1
HDFS 0.19.1

Figure 5.8: Performance results of the Random Read test

Figure 5.9: Random Read requests a read on each row key in random order

35



5.4. PERFORMANCE EVALUATION CHAPTER 5. IMPLEMENTATION

5.4.4 Random Write

Likes reads, HBase clients may not write to row keys in the order as they appear in the map, as
illustrated in figure 5.11. Random Write measures HBase performance when writing to row keys
in a random order. Figure 5.10 presents the results of the Random Write test. Like in Sequential
Write HDFS is much faster than XtreemFS. XtreemFS shows a slight performance increase with
three region servers, but a performance drop with two region servers. The decreasing line of HDFS
shows that it does not scale very well with Random Writes.

 0

 200

 400

 600

 800

 1000

 1200

 1  2  3

R
ow

s 
pe

r 
S

ec
on

d

Region Servers

XtreemFS 1.0 RC1
HDFS 0.19.1

Figure 5.10: Performance results of the Random Write test

Figure 5.11: Random Write requests a write on each row key in random order

36



CHAPTER 5. IMPLEMENTATION 5.4. PERFORMANCE EVALUATION

5.4.5 Scans

HBase supports scanning of row ranges. With a scan, HBase clients can read a range of rows
a once, as illustrated in figure 5.13. Scanning reduces the communication overhead between the
HBase client and region servers. Our scan performance measurements are presented in figure 5.12.
For a single node setup, XtreemFS is faster than HDFS. However HDFS scans twice the rate of
XtreemFS with more than one region server. HDFS shows better performance increases when
adding region servers.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 1  2  3

R
ow

s 
pe

r 
S

ec
on

d

Region Servers

XtreemFS 1.0 RC1
HDFS 0.19.1

Figure 5.12: Performance results of the Scan test

Figure 5.13: Scans request a read of a range of row keys

37



5.4. PERFORMANCE EVALUATION CHAPTER 5. IMPLEMENTATION

5.4.6 Discussion

In section 5.4 we presented the performance results measured on the VU testbed. Before conduct-
ing the tests, we hoped that HBase on XtreemFS would give us near liniar performance increase
in terms of throughput as we added more region servers. The results of XtreemFS for the Random
Read, Sequential Read, Sequential Write and Scan tests showed that throughput indeed increases
with a straight, liniar line. Random Read appears to be the slowest operation, but manifests the
best performance increase with more region servers. Scans are by far the fastest of all tests and
show reasonable performance gains when adding region servers. Remarkable is the Random Write
test, which is the only graph that does not show a straight line for XtreemFS. Two region servers
seem to give a slower throughput than one region server, but with three region servers through-
put does increase. We presume that XtreemFS may be inefficient in write operations under the
circumstances of the Random Write test.

The performance results presented in the Google BigTable paper [1] show similar results that
we measured in section 5.4. BigTable appears to also be fastest on the Scan test, and slowest
with Random Reads. Google concludes that Random Reads show the worst scaling, but in our
tests Random Reads appear to scale the best for XtreemFS. In our tests we only had few avail-
able nodes to benchmark HBase, where Google measured BigTable performance using 500 region
servers. HBase might show similar Random Read scalability results when also benchmarked with
500 nodes. Compared to HDFS, XtreemFS is slow on writes but fast on reads, although writes
stay the fastest on both filesystems. With both HDFS and XtreemFS, HBase shows good read
scalability in our performance measurement results, but less scalability for write operations.

Although our performance measurements show a performance increase when adding more re-
gion servers, we did not have the resources in this project to measure with more than three nodes.
The performance of HBase on XtreemFS may be different with hundreds or thousands of nodes.

38



Chapter6
Project Evaluation

Contents
6.1 Learnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1.1 XtreemOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1.2 XtreemFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1.3 HBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1.4 English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Development evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2.1 Default HBase on XtreemOS . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2.2 HBase on top of XtreemFS . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2.3 Running as the VO-user . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2.4 Invoking HBase using DIXI jobs . . . . . . . . . . . . . . . . . . . . . . 42

6.2.5 Implementing hbase-xos . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3 XtreemOS experiences . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3.2 Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.3.3 Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3.4 Source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.4 Project management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

This section evaluates the various aspects of the project, by describing the learnings we have gained
from the project, which experiments have been performed, difficulties and problems regarding the
implementation and XtreemOS components encountered and how we have solved them, and finally
we evaluate the project management.

39



6.1. LEARNINGS CHAPTER 6. PROJECT EVALUATION

6.1 Learnings

6.1.1 XtreemOS

Before this project, I had close to zero knowledge and experience with Apache HBase, XtreemOS
and XtreemFS. Thanks to this project I now have a better understanding of highly scalable
databases such as HBase, distributed filesystems like XtreemFS and grids as XtreemOS in general.
It is also the first existing open source project on which I have made an contribution. Although
I worked on a few of my own open source projects, XtreemOS is a very different environment.
When creating a hobbist project one is free to design, implement and deploy the entire system in
any way the author wants. In a large international project like XtreemOS this is impossible, as
each developer works on a small piece of the whole puzzle. Developers need to communicate with
each other to ensure that the different components cooperate.

In order to develop new functionality for an existing system, one first needs to understand it.
Therefore I have spend most of February 2009 to learn the basics of XtreemOS, XtreemFS and
HBase. XtreemOS is a system consisting of several layers, each consisting of multiple components
and are used on multiple machines on the network. Their distributed naturealone already makes
learning XtreemOS difficult for new developers. Additionally XtreemOS is a system in current
development, in which user and developer documentations are often out of date, or do not yet
exist. Therefore I learned how to use the XtreemOS API by reading the source codes available
on the public Subversion repository, which takes a significantly longer time than reading user or
developer documentation. The best way I have encountered to learn XtreemOS during this project
was when I installed a few test virtual machines in VMWare on my personal workstation. By in-
stalling XtreemOS one is forced to understand each component that is configured and started. At
the current state of XtreemOS the system does not work out-of-the-box, meaning that additional
configuration is required after installation Configuring the components often results in unexplained
errors or behaviour, forcing one to understand even better what each component should do.

6.1.2 XtreemFS

In my experience XtreemFS proved easy to learn. On the XtreemFS homepage [7] there is detailed
information available about it’s internals, configuration and user interfaces. XtreemFS requires
minimal configuration in a standard installation on a few nodes and thanks to the FUSE client it
allows transparent access to existing programs. During this project I had very few problems with
XtreemFS, except during the benchmark experiments of HBase which is evaluated in section 5.4.
Version 0.10.0 seemed to cause ChecksumException errors in HBase, and random disconnects on
mounted volumes. Before using XtreemFS in this project, I had used several distributed filesystems
before, including NFS and SSHFS, but I never used or heard of object-based filesystems. Object-
based filesystems like XtreemFS offer many advantages over existing distributed filesystems like
NFS, such as parallel transfers and replication. I believe distributed object-based filesystems like
XtreemFS offer a good solution to provide scalability to end-users.

6.1.3 HBase

Although I used databases in many of my school projects at the Hogeschool Utrecht such as
MySQL, SQLite and Oracle, I never needed more scalability for those projects. Therefore I did
not need to put them in clustered mode to scale further, or even think of alternatives such as
HBase. Learning the concepts of BigTable and HBase has broadened my knowledge of databases,
scalability and distributed systems in general. During this project I have experimented with HBase
on several Linux test installations and XtreemOS and in my experience it is easy for a new user to
get started with HBase. Installation, configuration and basic functionality of HBase is very well
documented on their Apache project page [13] which was the primary source of information I used
regarding HBase.

40



CHAPTER 6. PROJECT EVALUATION 6.2. DEVELOPMENT EVALUATION

6.1.4 English

In this project we have had several meetings to review the project status, decide about design and
implementation steps and to discuss this thesis. Thanks to the conversations I had with Guillaume,
Corina and several other people at the VU, I had the opportunity to practise my English speech
skills. Writing the project documents, technical documentation and this thesis helped me improve
my English writings aswell.

6.2 Development evaluation

6.2.1 Default HBase on XtreemOS

During the project we have performed several experiments and testings to examine the functionali-
ties and workings of HBase and the XtreemOS API. By experimenting with HBase and XtreemOS,
we have incrementally implemented the hbase-xos Python scripts and RPM package. First we tried
to run HBase placed in /usr/local/hbase on all XtreemOS nodes without any modifications as a
regular UNIX user, which worked without problems. Then we looked for a way to override the
default configuration and data paths in HBase without modifying the source code. To achieve this
we used the HBASE CONF DIR environment variable to point to the users home directory, and
placed HBase in /usr/share/hbase.

6.2.2 HBase on top of XtreemFS

Before we started the project, we had little knowledge of HBase and XtreemFS system internals
and anticipated that it would take a large part of the project to modify HBase to use XtreemFS
as the distributed filesystem. As described in section 5.1.2, we managed to implement HBase on
top of XtreemFS without any modifications, by using the file:// URL. Thus, it took us exactly
two days to fullfill this requirement versus half the project.

6.2.3 Running as the VO-user

Now that we had a working HBase implementation on top of XtreemOS, we attempted to invoke
HBase as a Virtual Organization user. In XtreemOS the OpenSSH server allows remote logins
and has been modified to perform authentication using XtreemOS certificates. This enables users
inside a specific Virtual Organization to log in with ssh-xos to remote systems inside the VO using
their XtreemOS certificate. When trying to launch and run HBase on the ssh-xos command line,
we discovered a very poor system response. It looked like each time an operation was performed
on the XtreemFS filesystem on the ssh-xos shell, the system hung for about two seconds. It took
us about a week to find out that the Account Mapping Service was the cause of the problem. The
Account Mapping Service in XtreemOS performs a translation from global user identifiers to local
system accounts. It uses a database to maintain this mapping, which was used in a very inefficient
way. This issue prevented us to normally run HBase as the Virtual Organization user, as HBase
uses XtreemFS intensively. To workaround the problem, we installed a few XtreemOS VMware
machines, and modified to Account Mapping Service code to always return the same mapping to
temporarily avoid the performance problem. Several weeks later the developers provided us with a
partly working solution to the problem, but as of this writing it has still broken the AMS daemon
on the node004 server at the VU testbed.

41



6.3. XTREEMOS EXPERIENCES CHAPTER 6. PROJECT EVALUATION

6.2.4 Invoking HBase using DIXI jobs

The core functionality of XtreemOS is to enable submission and execution of programs on the
grid. As described in section 3.1, DIXI accepts JSDL jobs descriptions to run programs on the
AEM service in XtreemOS. Currently, DIXI does not support the full JSDL 1.0 standard. Unfor-
tunately there is currently no developer documentation in DIXI. Therefore there is no other place
in XtreemOS than the DIXI source code to find which JSDL features are supported by DIXI. The
DIXI source code consists of thousand of lines of Java and small bits of C code, which takes a
long time to read and understand. For example, it took us several weeks to discover that DIXI
did not correctly implement the <Argument> tag of JSDL 1.0, but thanks to the quick response
of the DIXI developers this problem is now solved.

The majority of time invested was invested in exploring the current functionality and features
supported by DIXI. By experimenting with JSDL jobs, reading the DIXI source code and sending
questions to the DIXI developers we did achieve to successfully run HBase on multiple nodes in
the XtreemOS grid by using reservations, as described in section 5.1.3. However if DIXI would
have supported submitting one job to start a program multiple nodes, and could guarantee that
each program ran on a different machine, this would have been the preferred solution. That way
hbase-xos would be more simple, and DIXI could make the reservations transparently if needed.

6.2.5 Implementing hbase-xos

To automate the process of submitting HBase jobs to the XtreemOS grid, we wrote several Python
programs as described in section 5.1.7. The Python programming language is very well documented
in the publicly available Python documentation page [39], several example programs on the internet
and also in books [40] written about Python. We experimented with DIXI on XtreemOS as we
wrote the hbase-xos Python program.

6.3 XtreemOS experiences

6.3.1 Installation

During this project, we have installed XtreemOS several times using different CD-ROM images.
Around february we have used XtreemOS 0.1, which was the first public release. Although it
contained all XtreemOS components, all configuration needed to be done manually. This means
that creating configuration files, XtreemOS certificates, Virtual Organizations and adding resource
nodes was a time expensive activity, regardless of the many programming errors still in the system.
In the 0.1 release there was no way to specify during setup which type of XtreemOS node was
being installed.

XtreemOS version 1.1 was internally released around April. It contained improvements for each
individual component, but also made installation of XtreemOS slightly easier, as administrators
now had the option to install a different type of XtreemOS node: core, resource or client. Dia-
log boxes where now used to initially configure the AEM services, and several configuration files
where pre-generated, as well as some test XtreemOS certificates. Although version 1.1 has made
improvements to make installing XtreemOS easier, it still takes an average administrator at least
a day to figure out how it should be configured.

6.3.2 Functionality

As XtreemOS is a project in current development, there is functionality which has not yet been
implemented. During experiments with DIXI, as described in section 6.1.4, we encountered and
reported missing functionality which where relevant to the DIXI developers, such as support for
reliable multiple job submission and the JSDL <Argument> tag. In general XtreemOS is ready

42



CHAPTER 6. PROJECT EVALUATION 6.4. PROJECT MANAGEMENT

to install a simple grid, although much work has to be done to make installation and configuration
easier, and stabilizing the system as a whole.

6.3.3 Documentation

There is an XtreemOS user guide [41] available on the in XtreemOS homepage, but it has not
been updated since december 2008. Many components have changed since that time, including
their installation steps and configuration files. DIXI does not have a developer guide available
yet, but has some comments inside the source codes which allow automatic generation of JavaDoc
documentation. These source code comments have helped us during the project to learn how to
use the DIXI API. Except for the XtreemFS client commands which have been listed in section
3.2.3, none of the XtreemOS commands have manual pages. This required us to read the user
guide or their source code to understand how to use them.

6.3.4 Source code

The source code of XtreemOS is available on the public Subversion repository. The latests and
previous versions of all XtreemOS components can be downloaded using a recent Subversion client.
In our experience, the source code of XtreemOS currently often lacks comments, is sometimes
poorly indented and is overall very big, which makes it hard to understand it at a first glance.

6.4 Project management

As we described in section 4.1, the goal of the project was to implement a scalable database on
XtreemOS. Our implementation presented in section 5 fullfills this that goal. There are some
possible improvements and limitations, but the project goal has been achieved. According to
our original planning, we would have spend most of march and april modifying HBase to use
XtreemFS, but as we noted in section 6.1.4 we spend that time experimenting with DIXI. The
rest of the original planning roughly reflects the actual time spend, except that we packaged HBase
mid-April, and started writing this thesis early-April.

Before starting the project, we agreed with several deliverables. The first one was the implemen-
tation of HBase using HDFS as distributed filesystem on XtreemOS. As section 6.1.4 describes,
we could run HBase using HDFS on XtreemOS without problems. Because XtreemFS has an
FUSE client, we where able to use XtreemFS as distributed filesystem for HBase within a few
days, fulfilling the second requirement. Therefore, modifying the HBase source code to improve
XtreemFS performance would be pointless with FUSE. Packaging scripts have been implemented
in RPM archives, however when planning this project we did not expect they would be included
in the next public XtreemOS release. Technical documentation has been provided by a manual
page describing the syntax and arguments of the hbase-xos program, and source comments.

43



Chapter7
Conclusion

In this project we implemented HBase on XtreemOS. Although XtreemOS is in current develop-
ment, running a scalable distributed database like HBase on an XtreemOS grid is possible. We
packaged HBase for the second public XtreemOS release in June 2009. Performance measurements
on the VU testbed show that HBase on top of XtreemFS is scalable. Our implementation of HBase
on XtreemOS is functional, but there are some known limitations and improvements to be made:

• XOSAGA: the XOSAGA API was designed to make programming grid applications easier,
and also supports a Python API. XOSAGA can simplify the implementation of hbase-xos.
The hbase-xos program would then no longer need to generate JSDL files, import DIXI Java
classes, perform reservations or know about DIXI in the first place. However like DIXI,
XOSAGA is under active development. During the last weeks of May, developers released
version 0.2.0 of the XOSAGA python API. According to the developers that version should
support running HBase jobs on different XtreemOS resource nodes, internally also using
DIXI reservations.

• Time Synchronization: We did not deal with the time synchronization between HBase
servers, as this is much harder in grids than it would be in clusters. In grids, nodes may
span multiple administrative domains and thus also multiple time zones. Although the HBase
website [37] suggest that time synchronization is needed, perhaps future improvements in
HBase may remove this requirement.

• Authentication: Since the HBase is developers are currently focussed on improving the
overall performance of HBase, there is no access control or authentication mechanism imple-
mented yet in HBase. Whenever this functionality becomes available in HBase, XtreemOS
could benefit by using XtreemOS certificates for authentication.

• RPM dependencies: We have packaged default HBase distribution in XtreemOS, but
several of it’s dependencies are not. As a temporary solution, we packaged those dependencies
inside our RPM. Properly packaging a program is a time consuming task, therefore we did
not have the time in this project to package all HBase dependencies.

• HBase instances: HBase consumes a significant amount of system resources. For this rea-
son, our implementation supports only one HBase instance running at a XtreemOS resource
at the same time. This means only one Virtual Organization user may run HBase on the
same resource node.

Nowdays there is active research and development going on in grid computing, including the
XtreemOS project. Having a cloud computing infrastructure on XtreemOS can offer several ad-
vantages and benefits to users. By implementing a scalable database, we contributed towards the
realization of a cloud computing platform on XtreemOS.

44



AppendixA
Vrije Universiteit Organigram

45



AppendixB
HBase-Xos Manual Page

HBASE-XOS(1) HBASE-XOS(1)

NAME

hbase-xos - Run Apache Hbase on an XtreemOS grid

SYNOPSIS

hbase-xos [OPTIONS] {start|stop|restart|status|setup}

DESCRIPTION

hbase-xos is a python script which can be used to run Hbase on XtreemOS. It can

start, stop and restart Hbase on any available nodes on the XtreemOS grid, by sub-

mitting jobs using DIXI. Hbase configuration and data is typically stored in the

user’s XtreemFS automount in ~/.hbase and may be initialized using the setup com-

mandline argument. hbase-xos automatically updates the hbase.master configuration

value in ~/.hbase/conf/hbase-site.xml with the hostname of the node running the

Hbase master.

OPTIONS

-h --help

Display a help screen and quit.

-v --verbose

Instructs hbase-xos to output debug messages during execution. Use twice

for extra verbosity.

-H --hbase-homedir=DIR

Specifies the Hbase installation directory, which contains binaries,

libraries and configuration required to run Hbase. The default value is

/usr/share/hbase.

46



APPENDIX B. HBASE-XOS MANUAL PAGE

-u --hbase-userdir=DIR

Sets the user’s Hbase configuration and data directory to the given value.

The given directory must be shared amoung all Hbase nodes, e.g. on the

XtreemFS automounted home directory. The default value is ~/.hbase

-r --regions=NUM

Use the given number of region server nodes on the grid. This is a required

argument for the start and stop actions.

-c --certificate=FILE

Sets the XtreemOS certificate to be used for job submission. The default

value is ~/.xos/truststore/certs/user.crt

ENVIRONMENT

The environment variable HBASE_CONF_DIR must point to the user’s hbase directory

to use the normal hbase(1) command. This way it can determine which node is cur-

rently configured as the Hbase master.

EXAMPLES

First initialize the user hbase directory:

client$ hbase-xos setup

Then, start Hbase with 20 region servers on the grid from an XtreemOS client node.

client$ hbase-xos -r 20 start

Verify that they have started correctly:

client$ hbase-xos -v status

Launch the Hbase shell to administer the database as the VO user on the ssh-xos(1)

shell:

vouser$ hbase shell

And finally, stop all nodes again:

client$ hbase-xos stop

SEE ALSO

python(1) xsub(1) xconsole_dixi(1)

BUGS

The XtreemOS bugtracker is available on http://gforge.inria.fr/tracker/?group_id=411.

AUTHOR

Niek Linnenbank <nieklinnenbank@gmail.com>

April 2009 XtreemOS manual HBASE-XOS(1)

47



AppendixC
HBase-Xos Program

#!/usr/bin/env jython

#

# This script runs a Hbase master, and a given number

# of region servers on an XtreemOS grid. A possible improvement

# for this script may be to use the python XOSAGA API, if it supports

# submitting XtreemOS jobs on different nodes.

#

# Import standard python modules.

import sys

import os

import getopt

import socket

import tempfile

import time

# We require these JAR files.

sys.path.append(’/usr/share/java/xati.jar’)

sys.path.append(’/usr/share/java/DIXIMain.jar’)

sys.path.append(’/usr/share/java/DIXIMainServices.jar’)

sys.path.append(’/usr/share/java/aem-node.jar’)

sys.path.append(’/usr/share/java/bcpg.jar’)

sys.path.append(’/usr/share/java/bctsp.jar’)

sys.path.append(’/usr/share/java/bcel.jar’)

sys.path.append(’/usr/share/java/bcprov.jar’)

sys.path.append(’/usr/share/java/log4j.jar’)

sys.path.append(’/usr/share/java/mina-core.jar’)

sys.path.append(’/usr/share/java/slf4j-api.jar’)

sys.path.append(’/usr/share/java/slf4j-simple.jar’)

# Import them in our execution environment.

from eu.xtreemos.xati.API import XJobMng

from eu.xtreemos.xati.API import XResMng

from eu.xtreemos.xati.API import XReservationManager

from eu.xtreemos.system.communication.net import CommunicationAddress

from eu.xtreemos.xosd.utilities.security import Utils

from eu.xtreemos.xosd.metrics import MetricsDesc

from eu.xtreemos.xosd.metrics import MetricScope

from eu.xtreemos.xosd.metrics import MetricType

from eu.xtreemos.xosd.utilities.jobinfo import JobInfoList

from eu.xtreemos.xosd.utilities.metrics import InfoLevel

48



APPENDIX C. HBASE-XOS PROGRAM

from eu.xtreemos.xosd.utilities.metrics import TypeOfInfo

from eu.xtreemos.xosd.localallocmgr.attributes import *

from eu.xtreemos.xosd.reservationmanager.base import *

from eu.xtreemos.xosd.localallocmgr.basic import *

from eu.xtreemos.xosd.localallocmgr.frontend import *

from eu.xtreemos.xosd.localallocmgr.frontend.utils import *

from eu.xtreemos.xosd.utilities.security import UserCertificateUtility

from org.bouncycastle.jce.provider import BouncyCastleProvider

from org.apache.log4j import Logger

from java.util import ArrayList

from java.util import GregorianCalendar

from java.lang import Thread

from java.lang import String

from java.security import Security

from java.security.cert import X509Certificate

# Hbase installation directory.

hbase_homedir = "/usr/share/hbase"

# Hbase user configuration and data directory

hbase_userdir = None

# Path to the user’s XtreemOS certificate

cert_path = os.getenv("HOME") + "/.xos/truststore/certs/user.crt"

# XtreemOS X509 certificate.

cert = None

# Number of Hbase region servers to start.

hbase_num_regions = 0

# Output verbose messages. The higher the more verbose.

hbase_verbose = 0

# Initialize bouncycastle.

bc = BouncyCastleProvider()

Security.addProvider(bc)

#

# Reserves the given nodes.

#

def reserveNodes(nodes, cert, startTime, endTime):

CPU0 = "CPU0"

requests = ArrayList()

# Loop all nodes.

for node in nodes:

# Instantiate a new request.

request = ReservationRequest()

request.nodeAddress = node

request.localRequest = Request()

# Fill in the timeslots and attributes.

ttelm = TTElmFactory.createBasic(startTime, endTime, SharingValues.MUTUAL)

TTElmFactory.addOwnerInfo(ttelm, OwnersInfo("hbase-xos", "hbase-xos"))

TTElmFactory.addAttribute(ttelm, CurrentAmount(1))

49



APPENDIX C. HBASE-XOS PROGRAM

elmreq = TTElmRequestAdd(CPU0, ttelm)

request.localRequest.add(elmreq)

requests.add(request)

# Output debug trace.

if hbase_verbose >= 2:

print "Invoking: XReservationManager.createReservationExplicit(requests, cert)"

# Now send the requests to the reservation manager.

reservationId = XReservationManager.createReservationExplicit(requests, cert)

if reservationId == None:

print ’Failed to create reservation for nodes: ’ + str(nodes)

sys.exit(1)

# Success.

return reservationId

#

# Execute a job on the given resource nodes.

#

def performJob(jsdl, nodes, cert, serverType):

# Fill in timestamps.

startTime = GregorianCalendar()

startTime.add(GregorianCalendar.SECOND, 3)

endTime = startTime.clone()

endTime.add(GregorianCalendar.MINUTE, 2)

if hbase_verbose >= 1:

print str(nodes),

# Reserve the node.

resID = reserveNodes(nodes, cert, startTime, endTime)

jobID = XJobMng.createJob(jsdl, False, resID, cert)

# Wait for the timeslot to arrive.

check = GregorianCalendar();

while (check.before( startTime) ):

check = GregorianCalendar()

if hbase_verbose >= 1:

print ".",

Thread.sleep(1000)

# Output debug marker.

if hbase_verbose == 1:

print "!",

elif hbase_verbose >= 2:

print "Invoking: XJobMng.runJob(" + jobID + "," + \

resID + ",cert)",

else:

print ".",

# Run the job now!

if XJobMng.runJob(jobID, resID, cert) == -1:

print ’Failed to run jobID ’ + jobID

sys.exit(1)

50



APPENDIX C. HBASE-XOS PROGRAM

# Set a job metric, containing the type of HBase server: master or region.

Thread.sleep(2000)

XJobMng.addJobMetric(jobID, MetricsDesc("hbase", MetricType.string_t, \

"hbase server", MetricScope.job, False, None), cert)

XJobMng.setMetricValue(jobID, "hbase", None, None, serverType, cert);

# Free reservations.

XReservationManager.releaseReservation(resID, cert)

# Return the node on which we run.

info = XJobMng.getJobInfo(jobID, TypeOfInfo.BASIC.val(), \

InfoLevel.PROCESS.val(), None, cert)

return JobInfoList(info).getJobResources(jobID).get(0)

#

# Prints usage information.

#

def usage():

print "usage: hbase-xos [OPTIONS] {start|stop|restart|status|setup}"

print "Run Apache Hbase on an XtreemOS grid."

print ""

print "-h, --help Print help information"

print "-v, --verbose Output debug messages"

print "-H, --hbase-homedir=DIR Hbase installation directory"

print "-u, --hbase-userdir=DIR Hbase user configuration/data directory"

print "-r, --regions=NUM Number of Hbase region servers"

print "-c, --certificate XtreemOS certificate to use"

#

# Generate a JSDL for job submission via xsub.

#

def generateJSDL(prog,args,out,err):

return ("<JobDefinition xmlns=\"http://schemas.ggf.org/jsdl/2005/11/jsdl\">\n"

" <JobDescription>\n"

" <JobIdentification>\n"

" <Description>Runs " + prog + " on an XtreemOS grid</Description>\n"

" <JobProject>" + prog + "</JobProject>\n"

" </JobIdentification>\n"

" <Application>\n"

" <POSIXApplication xmlns=\"http://schemas.ggf.org/jsdl/2005/11/jsdl-posix\">\n"

" <Executable>" + prog + "</Executable>\n"

" <Output>" + out + "</Output>\n"

" <Error>" + err + "</Error>\n"

" <Argument>" + args + "</Argument>\n"

" </POSIXApplication>\n"

" </Application>\n"

" <Resources>\n"

" <TotalResourceCount>\n"

" <Exact>1</Exact>\n"

" </TotalResourceCount>\n"

" </Resources>\n"

" </JobDescription>\n"

"</JobDefinition>\n")

51



APPENDIX C. HBASE-XOS PROGRAM

#

# Get an ArrayList<String> of jobs running

# an HBase server of the given type (master or region).

#

def getActiveJobs(type):

jobIds = XJobMng.getJobsUser("", cert);

list = ArrayList()

# Do we have any jobs?

if jobIds == None:

return ret

# Walk them all.

for job in jobIds:

try:

if hbase_verbose:

print "Job: " + job

# Retrieve job information in XML format.

info = XJobMng.getJobInfo(job, TypeOfInfo.USER_METRICS.val() | \

TypeOfInfo.BASIC.val(), InfoLevel.PROCESS.val(), \

None, cert)

if len(info) > 0:

infoList = JobInfoList(info)

# Find out if this job is an HBase instance of the given type.

if infoList.getMetricValue(job, "hbase").getValue() == type and \

infoList.getMetricValue(job, "jobStatus").getValue() != "Done":

if hbase_verbose:

print "Job matches HBase for " + type + " : " + job

list.add(job)

except:

pass

return list

#

# Get a list of currently active master servers.

# Note: currently, there can be only one master in Hbase,

# but this may change in the future.

#

def getActiveMasters():

list = ArrayList()

jobInfo = None

for masterJob in getActiveJobs("master"):

info = XJobMng.getJobInfo(masterJob, TypeOfInfo.BASIC.val(), \

InfoLevel.PROCESS.val(), None, cert)

jobInfo = JobInfoList(info)

list.add(jobInfo.getJobResources(masterJob).get(0))

return list

52



APPENDIX C. HBASE-XOS PROGRAM

#

# Retrieve the list of currently active region servers.

#

def getActiveRegions():

list = ArrayList()

jobInfo = None

for regionJob in getActiveJobs("region"):

info = XJobMng.getJobInfo(regionJob, TypeOfInfo.BASIC.val(), \

InfoLevel.PROCESS.val(), None, cert)

jobInfo = JobInfoList(info)

list.add(jobInfo.getJobResources(regionJob).get(0))

return list

#

# Get a list of active XtreemOS resource nodes, regardless

# whether they run HBase already or not.

#

def getActiveResources(jsdl):

# Let them know what we are doing.

if hbase_verbose >= 2:

print "Invoking: XResMng.getResources(jsdl,cert,0)"

if jsdl == None:

nodes = XResMng.getResources(generateJSDL("dummy", "", "", ""), \

cert, 0)

else:

nodes = XResMng.getResources(jsdl, cert, 0)

# We need at *least* one resource node for anything in hbase-xos.

if nodes.size() <= 0:

print "No active resource nodes available"

sys.exit(1)

else:

return nodes

#

# Start Hbase using DIXI.

#

def start():

# We need the number of region servers to start.

if hbase_num_regions == 0:

usage()

sys.exit(1)

# Generate the job descriptions for xsub.

m = generateJSDL(hbase_homedir + "/bin/hbase-xos-master",

hbase_userdir + " " + hbase_homedir,

hbase_userdir + "/hbase-master.txt",

hbase_userdir + "/hbase-master.err")

s = generateJSDL(hbase_homedir + "/bin/hbase-xos-region",

hbase_userdir + " " + hbase_homedir,

53



APPENDIX C. HBASE-XOS PROGRAM

hbase_userdir + "/hbase-region.txt",

hbase_userdir + "/hbase-region.err")

# Retrieve the list of nodes.

nodes = getActiveResources(s)

regions = getActiveRegions()

masters = getActiveMasters()

available = ArrayList()

numStarted = 0

# Nodes without region servers are available.

for node in nodes:

if not regions.contains(node):

available.add(node)

# Verbosely output a list of nodes.

if hbase_verbose >= 1:

print ’List of all nodes: ’ + str(nodes)

print ’List of active masters: ’ + str(masters)

print ’List of active regions: ’ + str(regions)

print ’List of available nodes: ’ + str(available)

# Even more verbose: output the JSDL content.

if hbase_verbose >= 2:

print ’Master JSDL:’

print m

print ’Region JSDL:’

print s

# Verify we have enough available nodes.

if nodes.size() - regions.size() < hbase_num_regions:

print "Not enough resources (" + \

str(hbase_num_regions - (nodes.size() - regions.size())) + \

" more needed)"

sys.exit(1)

print "Starting Hbase:",

# Submit master job.

if masters.size() == 0:

performJob(m, available, cert, "master")

time.sleep(2)

# Submit region job(s).

for node in nodes:

if numStarted < hbase_num_regions:

available.remove(performJob(s, available, cert, "region"))

numStarted += 1

else:

break

print "OK"

54



APPENDIX C. HBASE-XOS PROGRAM

#

# Stops running Hbase instances.

#

def stop():

print "Stopping Hbase:",

# Fetch list of active servers.

regions = getActiveJobs("region")

masters = getActiveJobs("master")

# Set the number of region servers to stop.

if hbase_num_regions == 0:

num_regions = regions.size()

else:

num_regions = hbase_num_regions

# Kill region servers.

for region in regions:

# Restrict the number of region servers to kill.

if num_regions == 0:

break

# Send kill signal.

XJobMng.sendEvent(region, 9, 0, None, cert)

if hbase_verbose >= 1:

print region,

else:

print ".",

num_regions -= 1

# Only kill all masters if we have no regions anymore.

if getActiveRegions().size() > 0:

print "OK"

return

# Kill all master servers.

for master in masters:

if hbase_verbose >= 1:

print master,

else:

print ".",

# Send kill signal.

XJobMng.sendEvent(master, 9, 0, None, cert)

print "OK"

55



APPENDIX C. HBASE-XOS PROGRAM

#

# Stops and then starts Hbase again.

#

def restart():

stop()

start()

#

# Prints out the current status of Hbase.

#

def status():

print "Status Hbase:",

# Retrieve active hbase nodes.

masters = getActiveMasters()

regions = getActiveRegions()

print str(masters.size()) + " masters",

# Output list of masters in verbose mode.

if hbase_verbose >= 1:

print "(",

for node in masters:

print node.host.getCanonicalHostName(),

print ")",

print str(regions.size()) + " regions",

# Output a list of region servers in verbose mode.

if hbase_verbose >= 1:

print "(",

for node in regions:

print node.host.getCanonicalHostName(),

print ")"

else:

print ""

#

# Initializes the users Hbase directory.

#

def setup():

print "Initializing HBase:",

# Generate an JSDL first.

jsdl = generateJSDL("hbase-xos-setup", \

hbase_userdir + " " + hbase_homedir,"/tmp/hbase_setup.txt","/tmp/hbase_setup.out")

# Invoke hbase-xos-setup on the HBase user directory.

performJob(jsdl, getActiveResources(None), cert, "setup")

print "OK"

56



APPENDIX C. HBASE-XOS PROGRAM

#

# Program entry point

#

def main(argv):

global hbase_homedir, hbase_userdir

global hbase_verbose, hbase_num_regions

global cert_path, cert

# Supported operations using this script.

actions = {

"start" : start,

"stop" : stop,

"restart" : restart,

"status" : status,

"setup" : setup

}

# Attempt to parse command-line arguments.

try:

opts, args = getopt.getopt(argv, "hvH:u:r:c:", [

"help",

"verbose",

"hbase-homedir=",

"hbase-userdir=",

"regions=",

"certificate="])

# Catch errors.

except getopt.GetoptError:

usage()

sys.exit(1)

# Loop parsed arguments.

for opt, arg in opts:

if opt in ("-h", "--help"):

usage()

sys.exit(0)

elif opt in ("-v", "--verbose"):

hbase_verbose += 1

elif opt in ("-H", "--hbase-homedir"):

hbase_homedir = arg

elif opt in ("-u", "--hbase-userdir"):

hbase_userdir = arg

elif opt in ("-r", "--regions"):

hbase_num_regions = int(arg)

elif opt in ("-c", "--certificate"):

cert_path = arg

57



APPENDIX C. HBASE-XOS PROGRAM

#

# Obtain the user’s XtreemOS certificate.

#

cert = Utils.readX509Certificate(cert_path, " ")

#

# Set the user’s HBase home directory, if not explicitely set.

#

if hbase_userdir == None:

hbase_userdir = "/home/" + UserCertificateUtility.getGlobalUserIdentity(cert)

hbase_userdir += "/.hbase/"

# Invoke the appropriate function.

actions.get("" . join(args), usage)()

# All done.

sys.exit(0)

if __name__ == "__main__":

main(sys.argv[1:])

58



AppendixD
HBase Performance Evaluation Program

$ ./bin/hbase org.apache.hadoop.hbase.PerformanceEvaluation

Usage: java org.apache.hadoop.hbase.PerformanceEvaluation [--master=HOST:PORT] \

[--miniCluster] [--nomapred] [--rows=ROWS] <command> <nclients>

Options:

master Specify host and port of HBase cluster master. If not present,

address is read from configuration

miniCluster Run the test on an HBaseMiniCluster

nomapred Run multiple clients using threads (rather than use mapreduce)

rows Rows each client runs. Default: One million

Command:

randomRead Run random read test

randomReadMem Run random read test where table is in memory

randomWrite Run random write test

sequentialRead Run sequential read test

sequentialWrite Run sequential write test

scan Run scan test

Args:

nclients Integer. Required. Total number of clients (and HRegionServers)

running: 1 <= value <= 500

Examples:

To run a single evaluation client:

$ bin/hbase org.apache.hadoop.hbase.PerformanceEvaluation sequentialWrite 1

59



Bibliography

[1] Fay Chang, Jeffery Dean, Sanjay Ghemwat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed
storage system for structured data. Seventh Symposium on Operating System Design and
Implementation, November 2006.

[2] John M. Willis. Cloud vendors a to z (revised). http://www.johnmwillis.com/
cloud-computing/cloud-vendors-a-to-z-revised/, May 2009.

[3] Richard Martin and J. Nicholas Hoover. Guide to cloud computing. http:
//www.informationweek.com/news/services/hosted_apps/showArticle.jhtml?
articleID=208700713\&pgno=1\&queryText=\&isPrev=, May 2009.

[4] XTreemOS.eu. Xtreemos. http://www.xtreemos.eu/, October 2008.

[5] Linus Torvalds. Linux operating system kernel. http://www.kernel.org, February 2009.

[6] Massimo Coppola, Yvon Jgou, Brian Matthews, Christine Morin, Luis Pablo Prieto, Óscar
David Sánchez, Erica Y Yang, and Haiyan Yu. Virtual organization support within a grid-
wide operating system. IEEE Internet Computing, 12(2), 2008.

[7] XTreemfs.org. Xtreemfs. http://www.xtreemfs.org/, October 2008.

[8] Richard Jones. Anti-rdbms: A list of distributed key-value stores. http://www.metabrew.
com/article/anti-rdbms-a-list-of-distributed-key-value-stores/, May 2009.

[9] Matthias Nicola and Matthias Jarke. Performance modeling of distributed and replicated
databases. IEEE Transactions on Knowledge and Data Engineering, 12(4), July/August
2000.

[10] Google Research. Google bigtable. http://labs.google.com/papers/bigtable.html, Oc-
tober 2008.

[11] Amazon.com. Amazon simpledb. http://aws.amazon.com/simpledb/, October 2008.

[12] Jonathan Gray. Hadoop and hbase vs rdbms. http://www.docstoc.com/docs/2996433/
Hadoop-and-HBase-vs-RDBMS, May 2009.

[13] apache.org. Apache hbase. http://hadoop.apache.org/hbase/, October 2008.

[14] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Franois Yergeau.
Extensible markup language (xml) 1.0 fifthedition. http://www.w3.org/TR/2008/
REC-xml-20081126/, November 2008.

[15] XtreemOS project. Xtreemos bugtracker. http://gforge.inria.fr/tracker/?group_id=
411, May 2009.

60



BIBLIOGRAPHY BIBLIOGRAPHY

[16] Vrije Universiteit Amsterdam. Vrije universiteit amsterdam. May 2009.

[17] Christian Plattner and Gustavo Alonso. Ganymed: scalable replication for transactional web
applications. In Middleware ’04: Proceedings of the 5th ACM/IFIP/USENIX international
conference on Middleware, pages 155–174, New York, NY, USA, 2004. Springer-Verlag New
York, Inc.

[18] www.oracle.org. Oracle real applications clusters data sheet. Technical report, Oracle Enter-
prise, May 2009.

[19] Andrew S. Tanenbaum and Maarten van Steen. Distributed systems principles and paradigms.
pages 17–18. Pearson, 2007.

[20] Ian Foster. What is the grid: A three checkpoint list. July 2002.

[21] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. 2001.

[22] The Open Group. Ieee std 1003.1: Posix.1-2008. http://www.opengroup.org/onlinepubs/
9699919799/, December 2008.

[23] Tom Goodale, Shantenu Jha, Hartmut Kaiser, Thile Kielmann, Pascal Kleijer, Andre Merzky,
John Shalf, and Christopher Smith. A simple api for grid applications (saga). Number 090.
January 2008.

[24] Pascal Le Metayer. Design and implementation of basic checkpoint/restart mechanisms in
linux (d2.1.3). December 2007.

[25] Ali Anjomshoaa, Fred Brisard, Michel Drescher, Donal Fellows, An Ly, Stephen McGough,
Darren Pulsipher, and Andreas Savva. Job description submission language 1.0. Number 056.
Global Grid Forum, November 2005.

[26] R. Housley, W. Ford, W. Polk, and D. Solo. Internet x.509 public key infrastructure certificate
and crl profile. Internet Society, January 1999.

[27] Mike Mesnier, Gregory R. Ganger, and Erik Riedel. Object based storage. IEEE Communi-
cations Magazine 41, 41(8), August 2008.

[28] Douglas Crockford. The application/json media type for javascript object notation (json).
The Internet Society, July 2006.

[29] FUSE development team. Filesystem in userspace. http://fuse.sourceforge.net/, Febru-
ary 2009.

[30] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In SOSP
’03: Proceedings of the nineteenth ACM symposium on Operating systems principles, New
York, NY, USA, 2003. ACM Press.

[31] apache.org. Apache hadoop. http://hadoop.apache.org/, October 2008.

[32] Jeffery Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
OSDI ’04, December 2004.

[33] Jim Kellerman. Hbase: Structured storage of sparse data for hadoop, May 2009.

[34] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. Thrift: Scalable cross-language services
implementation. Facebook, april 2007.

[35] A.Th. van Deursen. Een hoeksteen in het verzuild bestel. Uitgeverij Bert Bakker, Amsterdam,
2005.

61



BIBLIOGRAPHY BIBLIOGRAPHY

[36] Vrije Universiteit Amsterdam. Vrije universiteit amsterdam: About the grif-
fin. http://www.vu.nl/en/about-vu-amsterdam/mission-and-profile/the-griffin/
index.asp, may 2009.

[37] The Apache Software Foundation. Hbase 0.19.2 overview. http://hadoop.apache.org/
hbase/docs/current/api/overview-summary.html, May 2009.

[38] Michael Stack. Testing hbase performance and scalability. http://wiki.apache.org/
hadoop/Hbase/PerformanceEvaluation, May 2009.

[39] The Python Project. Python v2.6.2 documentation. http://docs.python.org/index.html,
May 2009.

[40] Mark Lutz. Learning Python. O’Reilly Media Inc., Sebastopol, CA, 2008.

[41] Óscar David Sánchez. Xtreemos user and administrators guide. Technical report, XtreemOS
Project, December 2008.

62


